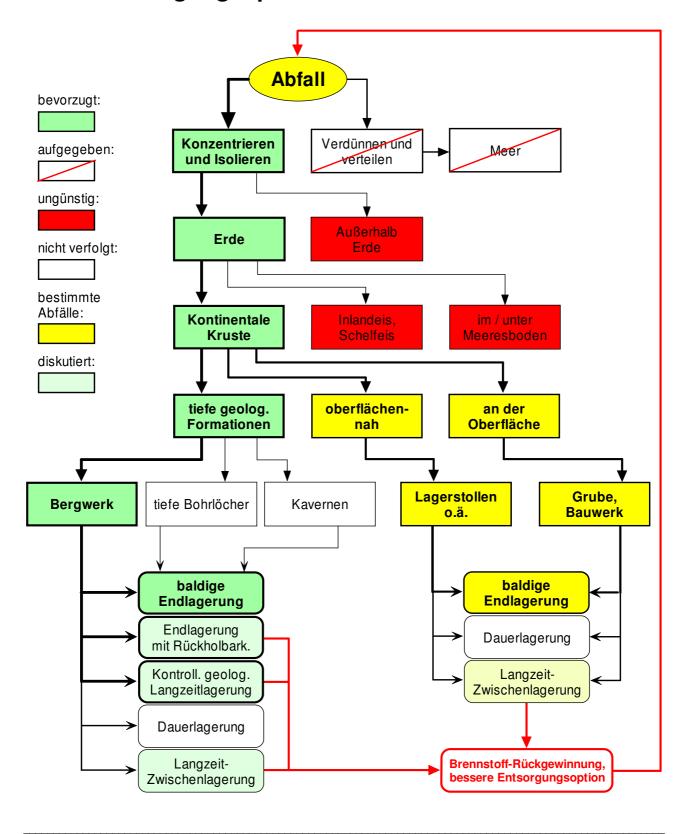
Management of radioactive wastes and the role of the public

Seminar of the Senate of the Czech Republic, Prague, 4th Februar 2005


Detlef Appel PanGeo – Geowissenschaftliches Büro, Hanover

The future of radioactive wastes - possibilities and risks of various waste management options

- Review of the discussion about waste management
- Different waste management strategies for different types of waste
- Final disposal in deep geological formations of the earth crust preferred option for long-lived wastes (including SF)
 - Why other options?
 - Which other options?
- Partitioning & Transmutation (P & T) an option to reduce the risk immanent to wastes?
- Final disposal and/or storage options to reduce risks related to exposure?
 - Characteristics
 - Comparative evaluation
- Summary

Waste management options

Entsorgungsoptionen für radioaktive Abfälle

Actual management strategies for different waste types

LLW + ILW (short-lived radionuclides)

- Final disposal on surface (construction, pit)
- Final disposal near to surface (gallery / tunnel, mine)
- Final disposal in deep geological formations (gallery / tunnel, mine)
 - may include retrievability of waste
 - may include test- / demonstration emplacement
- Controlled geological long-term storage / Geological deep disposal (gallery / mine)
- Long-term interim storage, on surface / ? below surface (construction, gallery / mine)

Particularly HLW / SF + ILW (long-lived radionuclides)

- Final disposal in deep geological formations (mine)
 - may include retrievability of waste
 - may include test- / demonstration emplacement
- Controlled geological long-term storage / Geological deep disposal (mine)
- Long-term interim storage, on surface / ? below surface (construction, gallery / tunnel, mine)

Key characteristics of final disposal in deep geological formations?

Advantages

- waste outside biosphere, large transport distances for waste constituents
- retention capacity of geotechnical and geological barriers against groundwater transport of radionuclides (and other contaminants)
- no need for post-closure maintenance of safety carrying elements (geotechnical + geological barriers) → passive system
- status of passive safety is reached soon after closure
- function and stability of geological barrier to be derived from nature observation
- → early decision for final disposal

Key characteristics of final disposal in deep geological formations?

Disadvantages of final disposal

- wrong decision on repository site cannot be corrected ("irreversible")
- no chance to react on unexpected behaviour of disposal system
- long-term behaviour cannot totally be described and evaluated
- correctness of the demonstration of long-term safety cannot be proven in a natural-scientific sense, predictions about function of barriers with uncertainty
- monitoring with major restriction only, no long-term monitoring
- repair not possible

→ discussion about alternatives

Discussed waste management alternatives

→ Reducing th	ne immanent	danger of	radioactive wastes

- Partitioning & Transmutation P & T

→ Reducing risks related to possible exposure

- final disposal in deep geological formations **EL**

- final disposal in deep geological formations, including possible retrievability of waste/SF

ELR

- controlled geological long-term storage (geological deep disposal)

KGL

- long-term interim storage (on surface / ? below surface)

LZL

- permanent storage [guidance] (on surface / ? below surface)

DL

Partitioning & Transmutation (P & T)

! Separation of long-lived radiotoxic radionuclides from waste / spent fuel and their transmutation to short-lived radionuclide or inactive nuclides !

Arguments presented for P & T

- reducing the radio-toxicity of waste
- reducing the needed isolation period
- reducing problems of system prediction with regard to demonstration of long-term safety
- reducing the amount of waste do be disposed
- reducing the heat production in the repository
- reducing the risk of proliferation by destroying fissionable U and Pu isotopes

Partitioning & Transmutation (P & T)

Evaluation

Radio-toxicity / isolation period / long-term safety

- dose depends on long-lived fission products, but
 - Transmutation of long-lived fission products not intended so far
 - feasibility open

Amount of wastes

- P & T of HAW / spent fuel only
 - larger amounts of LLW and ILW not affected
- additional secondary waste

Proliferation

- P & T requires additional interim storage and handling of separated materials prior transmutation
 - possible access to fissionable materials more simple as for spent fuel, particularly in a closed repository

Partitioning & Transmutation (P & T)

Evaluation (ctd.)

Status of development

- P & T needs large-scale technical facilities, the operation of which is connected with risks
- it is open, if and when P & T is ready for application, but
- no application within the next decades

Summary P & T

- no short-term solution for waste management problem
- based on permanent large-scale nuclear industry
- repository needed anyway (not treated wastes / secondary waste)

⇒ Achievement of P & T objectives just a hope

Arguments presented for storage options (HLW/SF + ILW_(long-lived))

Safety (general)

 Waiting for less dangerous management strategy (P & T) 	ELR, LZL
 confidence in measures > in functioning of geological barrier 	DL

Long-term safety of repository, proof of long-term safety

 repository site turns out to be not suitable after start of operation 	ELR
 reaction to unexpected events 	ELR, KGL

 improvement of system understanding and quality of the safety demonstration by in-situ investigations and observations
 ELR, KGL

Fairness → today's generation

democratic participation in decision about waste management
 ELR, LZL

Fairness → future generations, sustainability

 democratic participation in decision about waste management 	ELR, KGL
 maintaining the room for manoeuvre of future generations 	ELR, LZL
 facilitating later recovery of fissionable material 	ELR, LZL
 put into action the "polluter pays principle", avoiding burdens 	EL, KGL

Acceptance ELR, LZL

motives?

Characteristics of storage options (HLW/SF + ILW_(long-lived))

Definitive options

 Final disposal EL (may include test / demonstration emplacement) place: deep geological formations (mine) geosphere safety: geotechnical + geological barriers passive accessibility of wastes (after definitive emplacement)? no • Permanent storage / guardianship DL place: **on surface** / ? below surface (construction, gallery / tunnel, mine) biosphere (geosphere) safety: technical barriers, measures (control, maintenance, repair) active accessibility of wastes? always

Preliminary options

Long-term interim storage (on surface / below surface)
 place: on surface / ? below surface (construction,
 gallery / tunnel, mine)
 safety: technical barriers, measures (control, maintenance,
 repair)
 active
 accessibility of wastes?

Characteristics of management options (HLW/SF + ILW_(long-lived))

Definitive options with transient phase

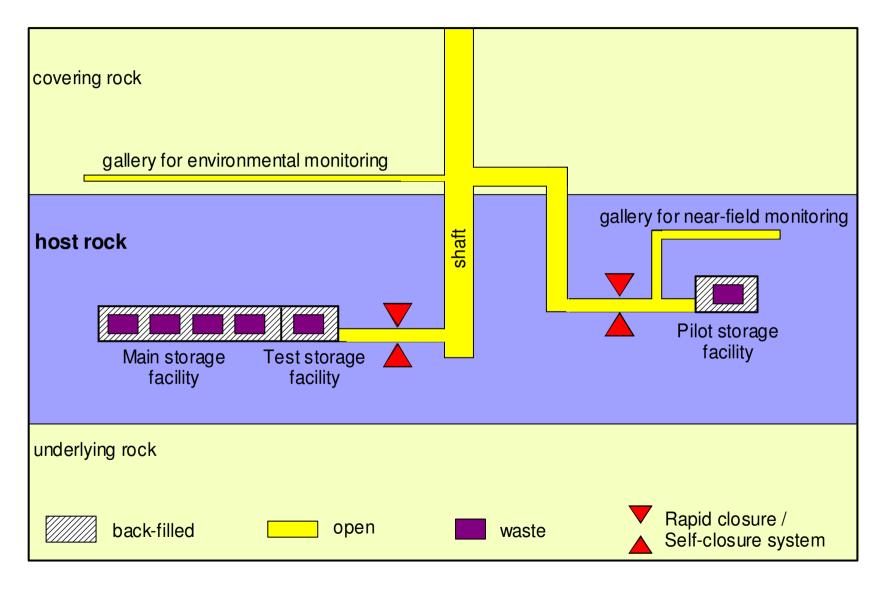
Final disposal with retrievability of waste

 (may include test / demonstration emplacement)
 place: deep geological formations (mine)
 "short-term" safety: technical barriers, measures (control, maintenance, repair)
 long-term safety: geotechnical + geological barriers accessibility of wastes?

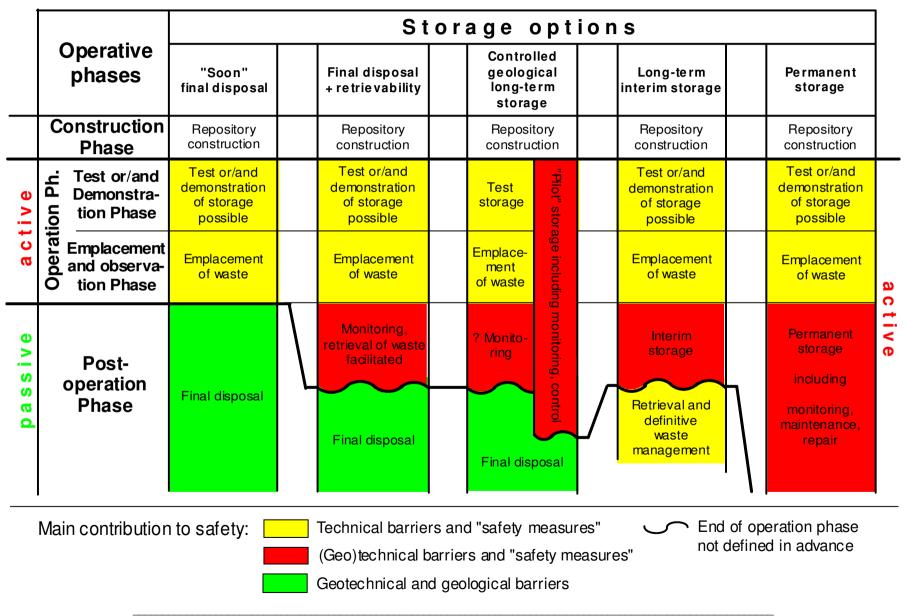
 Controlled geological long-term storage (Geological deep disposal)

place: deep geological formations (mine)
"short-term" safety: technical barriers, measures
long-term safety: geotechnical + geological barriers
accessibility of wastes?

ELR


geosphere

active passive restricted period


KGL

geosphere active passive restricted period

Elements of a controlled geological long-term storage facility (KGL)

Operative phases of various storage options

Comparative evaluation of storage options

Mains fields of evaluation		waste management options				
criteria	EL	ELR	KGL	LZL	DL	
Long-term safety						
passive (1) or active (2) safety elements (barriers, measures)		1 - 2	1 - 2	2	2	
safety reserves in case of unpredicted system behaviour	1	1 - 2	1 - 2	2 3	2 3	
robustness of the safety system in case of wrong assessment	1	1 - 2	1 - 2	2 3	2 3	
Demonstration of long-term safety						
predictability of safety providing elements / the overall system		1 - 2	1 - 2	2	2	
prediction techniques available		1 - 2	1 - 2	2	2	
Fairness, sustainability						
room of manoeuvre for future generations		2	2	1	1	
recovery of fissionable material		1 - 3	1 - 3	1	1	
polluter pays principle		2	2	3	3	
 1, 2, 3 threefold scale of evaluation (1 > 2 > 3) 1, 2 twofold scale of evaluation (1 > 2) 1 - 2, 1 - 2 evaluation depends on length of considered time period (long-term - short-term) 2 3 evaluation for underground / surface facilities 						

Summary

Partitioning & Transmutation

- P & T for next decades just a hope
- repository needed anyway

Storage options

- long-term safety / demonstration of long-term safety
 to be preferred: definitive storage options outside biosphere (inside geosphere)
 providing passive safety → EL > (ELR, KGL)
- fairness, sustainability evaluation inconsistent

If preliminary waste management option chosen - then

- no safety deficiencies as compared to final disposal
 permanently operating surveillance system (to be demonstrated!)
- well defined objective of applied option
- defined perspective regarding transition to definitive status
- technique for retrieval already available!
- design of facility to facilitate retrieval "without" risks
- provision of institutional and financial conditions for surveillance and retrieval