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Introduction 
 

The severe challenge posed by the need to reduce emissions of greenhouse gases, espe-
cially in the electricity generation sector, has led to renewed interest in the construction 
of new nuclear power plants. These would initially replace the ageing stock of existing 
reactors, then meet electricity demand growth, and eventually replace some of the fos-
sil-fired electricity generating plants. In the longer term, the promise is that a new gen-
eration of nuclear power plants could be used to manufacture hydrogen, which would 
replace the use of hydrocarbons in road vehicles. 

The public is likely to be understandably confused about whether nuclear power really 
is a cheap source of electricity. In recent years, there have been a large number of ap-
parently authoritative studies showing nuclear economics in a good light and most utili-
ties seem determined to run their existing plants for as long as possible. Yet utilities are 
clearly reluctant to build new nuclear power plants without cost and market guarantees 
and subsidies. Some of this apparent paradox is relatively easily explained by the differ-
ence between the running costs only of nuclear power, which is usually seen as rela-
tively low, and the overall cost of nuclear power—including repayment of the construc-
tion cost—which is substantially higher. Thus, once a nuclear power plant has been 
built, it may make economic sense to keep the plant in service even if the overall cost of 
generation, including the construction cost, is higher than the alternatives. The cost of 
building the plant is a “sunk” cost that cannot be recovered and the marginal cost of 
generating an additional kilowatt-hour (kWh) could be small. However, much of the 
difference between the economics of existing plants and the forecasts for future plants is 
explained by detailed differences in assumptions on, for example, operating perform-
ance and running costs, which are not readily apparent in the headline figures. 

The objective of this chapter is to identify the key economic parameters commenting on 
their determining factors and to review the assumptions of main forecasts from the past 
five years to identify how and why these forecasts differ. It will also identify what guar-
antees and subsidies the government might have to take to allow nuclear plants to be or-
dered. 
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1 The world market for nuclear plants: existing orders and pros-
pects 
 

During the past year, there has been increased publicity about an apparent international 
revival in nuclear ordering, especially in the Pacific Rim countries. The list of plants 
currently on order (see table 2) suggests this revival is overstated. In October 2005, 
there were 22 plants under construction worldwide with a total capacity of 17 gigawatts 
(GW), compared to 441 plants already in service with a total capacity of 368GW (see 
table 1). Of the units under construction, 16 use Indian, Russian, or Chinese technol-
ogy—designs that would be highly unlikely to be considered in the West. For 6 of the 
plants, construction started before 1990 and there must be doubts about whether these 
plants will be completed. In addition, the units under construction in Taiwan, ordered in 
1996 when completion was expected in 2004, have slipped by six years. The Western 
vendors active in Europe—Westinghouse and Areva—have just one order between 
them: Areva’s Olkiluoto order for Finland. 

China is frequently mentioned as a likely source of a large number of nuclear orders. It 
has forecast it will build a further 30 units by 2020. But for more than twenty-five years, 
China has been forecasting imminent orders but it has ordered only 11 units in that time, 
3 of which were small, locally supplied plants. The most likely outcome for China, 
given the need for China to use its limited capital resources carefully, is that it will con-
tinue to place a small number of nuclear orders on the international market—much 
fewer than forecast by the Chinese government or by the nuclear industry—while trying 
to build up its capability through its own nuclear power plant supply industry. 

India ordered plants from Western suppliers in the 1960s, but a nuclear weapons test in 
1975 using material produced in a Canadian research reactor led to the cutting of all 
contact with Western suppliers. India has continued to build plants using a 1960s Cana-
dian design. These have a poor record of reliability and frequently take much longer to 
build than forecast, so the completion dates in table 2 should be treated with skepticism. 
The United States also broke off cooperation in 1998 after further weapons tests but in 
2005, India and the United States were negotiating a deal over technological coopera-
tion in civil nuclear power. Canada also resumed sales of nuclear material in 2005. 
When or if this will lead to new nuclear orders from Western suppliers remains to be 
seen. 
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Table 1.  Nuclear capacity in operation and under construction 
Country Operating 

plants: capac-
ity MW (no of 

units) 

Plants under 
construction: 
capacity MW 
(no of units) 

% of elec-
tricity nu-

clear (2004) 

Technologies Suppliers 

Argentina 935 (2) - 9 HWR Siemens AECL 
Armenia 376 (1) - 35 WWER Russia 
Belgium 5728 (7) - 55 PWR Framatome 
Brazil 1901 (2) - 4 PWR Westinghouse Siemens 

Bulgaria 2722 (4) - 38 WWER Russia 
Canada 12599 (18) - 12 HWR AECL 
China 6587 (9) 2000 (2) ? PWR, HWR, 

WWER 
Framatome, AECL, 

China, Russia 
Taiwan 4884 (6) 2600 (2) ? PWR, BWR GE, Framatome 

Czech Rep 3472 (6) - 31 WWER Russia 
Finland 2656 (4) 1600 (1) 27 WWER, BWR, 

PWR 
Russia, Asea, Westing-

house 
France 63473 (59) - 78 PWR Framatome 

Germany 20303 (17) - 28 PWR, BWR Siemens 
Hungary 1755 (4) - 33 WWER Russia 

India 2983 (15) 3638 (8) 3 HWR, FBR, 
WWER 

AECL, India, Russia 

Iran - 915 (1) - WWER Russia 
Japan 47646 (55) 1933 (2) 25 BWR, PWR Hitachi, Toshiba, Mitsu-

bishi 
S. Korea 16840 (20) - 40 PWR, HWR Westinghouse, AECL, 

Korea 
Lithuania 1185 (1) - 80 RBMK Russia 

Mexico 1310 (2) - 5 BWR GE 
Netherlands 452 (1) - 4 PWR Siemens 

Pakistan 425 (2) 300 (1) 2 HWR, PWR Canada, China 
Romania 655 (1) 655 (1) 9 HWR AECL 

Russia 21743 (31) 3775 (4) 17 WWER, RBMK Russia 
Slovak Rep 2472 (6) - 57 WWER Russia 

Slovenia 676 (1) - 40 PWR Westinghouse 
S. Africa 1842 (2) - 6 PWR Framatome 

Spain 7584 (9) - 24 PWR, BWR Westinghouse, GE Sie-
mens 

Sweden 8844 (10) - 50 PWR, BWR Westinghouse, Asea 
Switzerland 3220 (5) - 40 PWR, BWR Westinghouse, GE Sie-

mens 
Ukraine 13168 (15) - 46 WWER Russia 

Un. Kgdom. 11852 (23) - 24 GCR, PWR UK, Westinghouse 
Un. States 97587 (103) - 20 PWR, BWR Westinghouse, B&W, CE, 

GE 
WORLD 367875 (441) 19210 (24) 16   

Source: World Nuclear Association (http://www.world-nuclear.org/info/reactors.htm) 

Notes: 1. Plants under construction does not include plants on which construction has stalled.  
2. Technologies are: PWR: Pressurized Water Reactor. BWR: Boiling Water Reactor. HWR: Heavy Wa-
ter Reactor (including Candu). WWER: Russian PWR. RBMK: Russian design using graphite and water. 
FBR: Fast Breeder Reactor. GCR: Gas-Cooled Reactor  
3. Figures for Canada do not include two units with total capacity 1561MW, which were closed in the 
1990s but which it was decided in October 2005 would be refurbished in preparation for reopening. 
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Table 2.  Nuclear Power Plants under construction worldwide 
Country Site Reactor 

type 
Vendor Size 

MW 
Construction 

start 
Construction 

stage (%) 
Expected 
operation 

China Tianwan 1 WWER Russia 1000 1999 70 2006 
China Tianwan 2 WWER Russia 1000 2000 100 2006 

Taiwan Lungmen 1 ABWR GE 1300 1999 57 2009 
Taiwan Lungmen 2 ABWR GE 1300 1999 57 2010 
Finland Olkiluoto 3 EPR Areva 1600 2005 - 2009 

India Kaiga 3 Candu India 202 2002 45 2007 
India Kaiga 4 Candu India 202 2002 28 2007 
India Kudankulam 1 WWER Russia 917 2002 40 2008 
India Kudankulam 2 WWER Russia 917 2002 40 2008 
India Tarapur 3 Candu India 490 2000 73 2007 
India PFBR FBR India 470 2005 0 ? 
India Rajasthan 5 Candu India 202 2002 34 2007 
India Rajasthan 6 Candu India 202 2003 19 2007 
Iran Bushehr WWER Russia 915 1975 75 2006 

Japan Tomari 3 PWR Mitsubishi 866 2004 28 2009 
Japan Higashi Dori 1 BWR Toshiba 1067 2000 95 2005 

Pakistan Chasnupp 2 PWR China 300 2005 - 2011 
Romania Cernavoda 2 Candu AECL 655 1983 71 2007 

Russia Balakovo 5 WWER Russia 950 1987 ? 2010 
Russia Kursk 5 RBMK Russia 925 1985 70 ? 
Russia Kalinin 4 WWER Russia 950 1986 ? 2010 
Russia Volgodonsk 2 WWER Russia 950 1983 ? 2008 

TOTAL    17480    

Sources: PRIS Data Base (http://www.iaea.org/programmes/a2/index.html), Nuclear News, World list of 
nuclear plants 
Note: Plants marked * have achieved first criticality 

 

Table 3.  Nuclear power plants on which construction has been stopped 
Country Site Tech Vendor Size MW net Construction start Construction % 

Argentina Atucha 2 Candu AECL 692 1981 80 
Brazil Angra 3 PWR Siemens 1275 1976 30 

N. Korea Kedo 1 PWR S Korea 1000 1997 33 
N. Korea Kedo 2 PWR S Korea 1000 1997 33 
Romania Cernavoda 3 Candu AECL 655 1983 10 
Romania Cernavoda 4 Candu AECL 655 1983 8 
Romania Cernavoda 5 Candu AECL 655 1983 8 
Slovakia Mochovce 3 WWER Russia 405 1983 50 
Slovakia Mochovce 4 WWER Russia 405 1983 40 
Ukraine Khmelnitsky 3 WWER Russia 950 1986 15 
Ukraine Khmelnitsky 4 WWER Russia 950 1987 15 
TOTAL    8642   

Sources: PRIS Data Base (http://www.iaea.org/programmes/a2/index.html), Nuclear News, world list of 
nuclear plants 
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Table 4.  Possible orders in the next two to three years 
Buyer Site Bidders Need Possible order 

date 
Forecast 

completion 
China Sanmen Areva (EPR), Westinghouse 

(AP1000), Russia (WWER-1000) 
2x1000MW 2005/06 ? 

China Yangjiang Areva (EPR), Westinghouse 
(AP1000), Russia (WWER-1000) 

2x1000MW 2005/06 ? 

France Flamanville 3 Areva (EPR) 1x1600MW 2006 2012 
Korea Shin-Kori 1&2 Korea (KSNP) 2x1000MW 2005 2010, 2012 
Korea Shin-Kori 3&4 Korea (APR-1400) 2x1400MW 2006 2012, 2013 
Japan Tsuruga 3&4 Mitsubishi (APWR) 2x1500MW 2006 2014 

Source: Various press reports 
 

Japan is another country that has consistently forecast large increases in nuclear capac-
ity which have not been matched by actual orders. Japanese companies supply these 
plants using technology licensed from Westinghouse and GE. It may take up to twenty 
years to get approval to build on sites in Japan, although once construction starts, com-
pletion is usually quick (four years typically) and does not usually overrun. A series of 
accidents at plants in Japan, often badly mishandled, have led to an increase in public 
concern about nuclear power, and finding sites for further plants is likely to be difficult. 

Reliable information from Russia on the status of construction at nuclear plants is diffi-
cult to get and the plants listed here may not be actively being built. A particular doubt 
is the Kursk 5 plant, which uses the same technology as the Chernobyl plant. 

Table 3 shows that there are eleven units on which construction started but has not been 
carried out thusfar. For these, the quoted degree of completion may be misleading. 
Plants reported to be less than 33 percent complete are likely to have seen only site 
preparation with no actual reactor construction. 

Of the prospective orders over the next year or two (see table 4), China has said it ex-
pects to place these orders in 2005, but it would be no surprise if this timetable is not 
met. The units for Korea will use Korean technology (licensed from 
BNFL/Westinghouse). Construction start-time has slipped several times and substantive 
construction is not expected to start now until 2006 for units 1 and 2, and 2007 for units 
3 and 4. 

The Tsuruga units—the first expected orders for the APWR design—have also slipped 
by about six years from their original schedule. The Flamanville plant to be built in 
France cannot be ordered until after an independent committee appointed by the gov-
ernment has completed a public consultation exercise, the conclusion of which is 
unlikely to come before mid-2006. 

1.1 US initiatives 
The Bush administration has made a concerted effort to encourage a revival of nuclear 
ordering under its Nuclear Power 2010 program, launched in 2002. The program fo-
cuses on Generation III+ designs (see below). Under the program, the US Department 
of Energy expects to launch cooperative projects with industry: 

“.. to obtain NRC approval of three sites for construction of new nuclear power 
plants under the Early Site Permit (ESP) process, and to develop application prepara-
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tion guidance for the combined Construction and Operating License (COL) and to 
resolve generic COL regulatory issues. The COL process is a ‘one-step’ licensing 
process by which nuclear plant public health and safety concerns are resolved prior 
to commencement of construction, and NRC approves and issues a license to build 
and operate a new nuclear power plant.”1 

A total of up to US$450 million in grants is expected to be available. Two main organi-
zations have emerged to take advantage of these subsidies. Nustart, launched in 2004, 
comprises a consortium of eight US utilities including Constellation Energy, Entergy, 
Duke Power, Exelon, Florida Power & Light, Progress Energy, Southern Company, and 
the Tennessee Valley Authority (TVA, providing staff time not cash). The French utility 
EDF and the vendors Westinghouse and GE are also members but have no voting rights. 
Nustart plans to make two applications—one to build a GE ESBWR at Entergy’s Grand 
Gulf (Texas) site and one to build a Westinghouse AP-1000 at TVA’s Bellefonte site 
(see section 3 for more details on these designs). 

The other main group is led by the utility Dominion. Dominion was seeking a COL for 
an advanced version of Atomic Energy of Canada’s CANDU design—the ACR-700—
at North Anna (Virginia) where Dominion already operates two power reactors. How-
ever, in January 2005, it announced that it was replacing the ACR-700 with GE’s 
ESBWR mainly because of the expected time for a Candu plant to be licensed in the 
United States. A Candu design has not achieved regulatory approval in the United 
States and the NRC forecast that its approval process could take more than sixty 
months—much longer than would be required for a Generation III+ PWR or BWR. 

A number of individual utilities have also announced their intention to investigate 
whether to apply for COLs to take advantage of federal subsidies. These include a num-
ber of members of Nustart operating independently, including TVA, Constellation, En-
tergy, Duke Power, Progress Energy, and Southern Company, plus South Carolina Elec-
tric & Gas. TVA asked the DOE to cover half of the cost (currently estimated at $4 mil-
lion) of a feasibility study on the building of an Advanced Boiling Water Reactor 
(ABWR) at the utility’s Bellefonte site in Alabama. The other members of the TVA 
group are Toshiba, GE, Bechtel, USEC, and Global Nuclear Fuel-Americas. TVA’s fea-
sibility study, released in September 2005, based on the construction of two GE 
ABWRs at Bellefonte, forecast that the plants could be built in forty months for 
$1,610/kW. This proposal appears now to be a lower priority than the Nustart initiative 
partly because the ABWRs would have been the only two of their kind in the United 
States and the ABWR appears to have been superceded by the ESBWR. Constellation 
Energy announced in September 2005 that it had formed a joint venture with the Areva 
Inc. and Bechtel Power to sell Areva’s EPR units in the United States. Entergy an-
nounced also in September 2005 that it would put together a COL application for its 
site. 

Although both Nustart and the Dominion group intend to pursue the licensing process, 
all the way to issuance of a license, neither has committed to building a new plant, and 
no reactor orders have been placed. It remains unclear whether the utilities in the vari-
ous initiatives are really committed to building new nuclear plants or whether they are 
just taking advantage of government subsidies in the hope that further subsidies for con-
struction would be made available and that there would be market guarantees which 
                                                      
1 http://www.ne.doe.gov/NucPwr2010/NucPwr2010.html 
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would mean new nuclear plants would not be exposed to any risk from wholesale elec-
tricity markets. 

The initiatives by Nustart and Dominion are put in perspective by the CEO of Domin-
ion, Thomas Capps. In May 2005, he stated:2 

“We aren’t going to build a nuclear plant anytime soon. Standard & Poor’s and 
Moody’s would have a heart attack [referring to the debt-rating agencies]. And my 
chief financial officer would, too.” 

This reflects the reality that decisions on nuclear orders can only be taken with the im-
plicit support of the financial community. No company would place a nuclear order if it 
was likely to lead to a significant increase in the cost of their borrowing or a significant 
fall in their share price. 

                                                      
2 M. Wald, “Interest in Reactors Builds, But Industry Is Still Cautious,” New York Times, April 30, 2005, 
p 19. 
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2 Current designs 
 

The most relevant designs for orders to be placed in the next decade, particularly in the 
West, would appear to be so-called Generation III and Generation III+ designs, often 
called Advanced Reactors. The main distinction between Generation II plants and Gen-
eration III plants is that the latter incorporate a greater level of “passive” compared to 
engineered safety. For example, Generation III designs would rely less on engineered 
systems for emergency cooling and more on natural processes, such as convection. 
There are a large number of designs that have been announced, but many are not far ad-
vanced, do not have regulatory approval, and have limited prospects for ordering. There 
is no clear definition of what constitutes a Generation III design, apart from it being de-
signed in the last fifteen years, but the main common features quoted by the nuclear in-
dustry are: 

• A standardized design for each type to expedite licensing, reduce capital cost, 
and reduce construction time 

• A simpler and more rugged design, making them easier to operate and less vul-
nerable to operational upsets 

• Higher availability and longer operating life—typically sixty years 
• Reduced possibility of core-melt accidents 
• Minimal effect on the environment 
• Higher burnup to reduce fuel use and the amount of waste 
• Burnable absorbers (“poisons”) to extend fuel life3 

These characteristics are clearly very imprecise and do not define well what a Genera-
tion III plant is other than that the design was evolved from existing models of PWR, 
BWR, and Candu (see Appendix 2 for an account of the technologies and Appendix 3 
for a list of the main vendors). The distinction between Generation III and III+ designs 
is even more unclear, with the US Department of Energy saying only that III+ designs 
offer advances in safety and economics over III designs. Until there is much more ex-
perience with Generation III and III+ plants, any figures on the generation cost of power 
from these designs should be treated with the utmost caution. 

2.1 PWRs 

2.1.1 EPR 
The only Generation III or III+ PWR to be ordered yet is the Areva European Pressur-
ized water Reactor (EPR) for the Olkiluoto site in Finland. The Finnish government is-
sued a construction license in February 2005 and construction started in summer 2005. 
The EPR has also been bid for in orders from China, but the result of this tender had not 
been decided by October 2005. France intends to build at least one EPR and perhaps 
five successor units, but these plans are far from firm yet. The EPR received safety ap-
proval from the French authorities in September 2004 and from the Finnish authorities 
in January 2005. Areva has asked the US Nuclear Regulatory Commission (NRC)—in 
collaboration with Constellation Energy—under the Nuclear Power 2010 program to 

                                                      
3 http://www.uic.com.au/nip16.htm 
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begin licensing of the EPR in the United States. For the US market, EPR will be an ab-
breviation for Evolutionary Power Reactor. 

The EPR has an output of 1600 megawatts (MW) although this may be increased to 
1700MW for orders after Olkiluoto and is expected to be built in fifty-seven months 
from laying of first concrete to commissioning. The design was developed from the 
previous Framatome design, N4, with some input from Siemens’ previous design, the 
“Konvoi” plant. A reduction in the refueling time is expected to allow a load factor4 of 
about 90 percent. 

The Finnish buyers, TVO, have chosen not to publish a detailed breakdown of the con-
struction cost, but the order is described as “turnkey” and company officials stated the 
cost was about €3 billion. Assuming an output of 1600MW, this represents a cost of 
about €1,875/kW.5 However, this cost includes interest charges and decommissioning 
charges which are not conventionally included in comparisons of nuclear construction 
costs. The Olkiluoto order is widely seen as a special case and it has been suggested that 
Areva has offered a price that might not be sustainable to ensure that their new technol-
ogy is demonstrated, while the buyer, TVO, is not a normal electric utility. TVO is a 
company owned by large Finnish industry that supplies electricity to its owners on a 
not-for-profit basis. The plant will have a guaranteed market and will not therefore have 
to compete in the Nordic electricity market, although if the cost of power is high com-
pared to the market price, the owners will lose money. The real cost of capital for the 
plant is only 5 percent per annum.6 

The French utility EDF has not said how much it expects to pay for the Flamanville 
plant. However, Areva has stated that it would expects an EPR supplied to the US mar-
ket to cost between US$1,600 and 2,000/kW (not including interest during construction 
and decommissioning charges). These figure were being described by Areva as not 
“completely finished,” but the US$2,000/kW is a little below the total figure quoted for 
Olkiluoto.7 

It is worth noting that while the operating reliability of the “Konvoi” plants has been 
outstanding, that of the N4 plants is much poorer. The first unit, Chooz B1, began gen-
erating in 1996 but suffered serious teething problems and in the next four years, its av-
erage load factor was less than 40 percent. Since then, reliability has been much better 
and load factor has averaged 75 percent. The other three units of this design followed a 
similar pattern of  three to four years of very poor performance (typical average load 
factor of about 40 percent) followed by reasonable reliability (average load factor of 
about 75 percent). The N4 design was said to have been built upon the experience of the 
sixty PWRs built in France and this illustrates that it cannot be assumed that new de-
signs, such as EPR, will be reliable just because they build on past experience. 

                                                      
4 Annual (or lifetime) load factor is calculated as the annual (or lifetime) output of the plant as a percent-
age of the output the plant would have produced if it had operated continuously at full power and is a 
good measure of the reliability of the plant. 
5 Conversions from € to US$ are made assuming an exchange rate of €1=US$1.2 and from £ to US$ as-
suming £1=US$1.8. 
6 A complaint to the European Commission by the European Renewable Energies Federation was made in 
December 2004 that the Olkiluoto plant would receive illegal state aid. This complaint had not been ruled 
on by October 2005. 
7 Nucleonics Week, September 22, 2005, p 12. 
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2.1.2 AP-1000 
The AP-1000 (Advanced Passive) was designed by Westinghouse and was developed 
from the AP-600 design. The rationale for the AP-600 was to increase reliance on pas-
sive safety and also that scale economies (from building larger units as opposed to 
building larger numbers) had been overestimated. An executive of Westinghouse justi-
fied the choice of a unit size of 600MW rather than 1000–1300MW by stating that “the 
economies of scale are no longer operative.”8 The AP-600 went through the US regula-
tory process and was given safety approval in 1999. By then, it was clear that the design 
would not be economical and the AP-600 was never offered in tenders. Its size was in-
creased to about 1150MW in the hope that scale economies would make the design 
competitive. In September 2004, the US Nuclear Regulatory Commission (NRC) 
granted a Final Design Approval (FDA), valid for five years, to Westinghouse for the 
AP1000. The NRC anticipates issuing a standard Design Certification, valid for fifteen 
years before December 2005. AP-1000 has so far been offered in only one call for ten-
ders, the current call for four Generation III units for China, which had not yet been 
awarded in July 2005. 

The AP-1000’s modular design is expected to allow it to be built in thirty-six months at 
a cost of $1,200/kW. However, until details of actual bid costs are available and until 
units are built, these figures should be treated with skepticism. 

2.1.3 System 80+/APR-1400 
Combustion Engineering’s System 80+ design received regulatory approval in the 
United States in 1997 when Combustion Engineering was owned by Asea Brown 
Boveri (ABB). ABB (including Combustion Engineering nuclear division) was subse-
quently taken over by British Nuclear Fuel Limited (BNFL) and was absorbed into the 
Westinghouse division and the System 80+ is not being offered for sale by Westing-
house. However, the Korean vendor, Doosan, has used this design under license from 
Westinghouse to develop its APR-1400, which is expected to be ordered for Korea in 
the next year or two. Korea did try to offer the design for the current tender for Genera-
tion III plants for China but it was rejected. It seems unlikely that the APR-1400 will be 
offered in Western markets. 

2.1.4 APWR 
Development of the Advanced PWR (APWR) by Mitsubishi and its technology licen-
sor, Westinghouse, was launched at about the same time as the ABWR about fifteen 
years ago but ordering has fallen far behind that of the ABWR and first orders are not 
expected until about 2007. It is not clear whether the APWR will be offered in the West. 
Mitsubishi has never tried to win orders in the West and Westinghouse is concentrating 
its efforts on the AP-1000. 

2.1.5 AES-91 WWER-1000 
This is the latest Russian design offered by Atomstroyexport and was one of three de-
signs short-listed for Olkiluoto. Finland has two earlier generation WWERs (at Loviisa) 
and because of its geopolitical position and previous experience with WWER technol-

                                                      
8 Nucleonics Week Special Report, “Outlook on advanced reactors,” March 30, 1989, p 3. 
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ogy, Finland considered the latest Russian design. It has also been bid for those orders 
expected to be placed for four units for China in 2005/06. How far it can be categorized 
as a Generation III plant is not clear and it seems unlikely it would be considered for 
any Western market other than Finland. 

2.2 BWRs 
2.2.1 ABWR 
The ABWR was developed in Japan by Hitachi and Toshiba and their US technology li-
censor, General Electric (GE). The first two orders were placed around 1992 and com-
pleted in 1996/97. By mid-2005, there were three ABWRs in service and one under 
construction in Japan and two under construction in Taiwan. Total construction costs for 
the first two Japanese units were reported to be $3,236 per kilowatt for the first unit in 
1997 dollars and estimated to be about $2,800 per kilowatt for the second. These costs 
are well above the forecast range.9 The ABWR received safety approval in the United 
States in 1997, but may now be considered not advanced enough for orders in the West. 

2.2.2 ESBWR 
The Economic & Simplified BWR (ESBWR) is a 1500MW design developed by GE. In 
October 2005, GE applied to the NRC for certification of the ESBWR design. The 
ESBWR has been developed in part from GE’s Simplified Boiling Water Reactor 
(SBWR) and the ABWR. The SBWR began the process of getting regulatory approval 
in the 1990s but was withdrawn before the procedure was complete and did not win any 
orders. GE hopes to gain FDA for the ESBWR by the end of 2006 with certification fol-
lowing about a year later. The NRC had not forecast a completion date by October 
2005. 

2.2.3 Other BWRs 
A number of other designs have been developed, but none has received regulatory ap-
proval anywhere and only the SWR has been offered for sale. The main BWR designs 
include: 

• The SWR: a 1000–1290MW design developed by Areva. This was one of the 
three designs short-listed for Olkiluoto. 

• The BWR-90+: a 1500MW design developed by Westinghouse from the Asea 
BWR design. 

2.3 Candus 
The Advanced Candu Reactor (ACR) is being developed in two sizes: ACR-700 
(750MW) and ACR-1000 (1100-1200MW). The ACR-700 was being reviewed by the 
US NRC under the sponsorship of the US utility Dominion, but Dominion withdrew its 
support in January 2005, opting instead for GE’s ESBWR, citing the long time-scale of 
at least five years that NRC said would be needed for the review because of the lack of 
experience in the United States with Candu technology. Efforts to license the ACR in 
the United States are continuing but at a slower pace. As a result of Dominion’s deci-

                                                      
9 K. Hart, “World’s First Advanced BWR Could Generate Electricity Next Week,” Nucleonics Week, 
January 25, 1996, p. 1. 
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sion to drop the ACR-700 as its reference design, AECL says it will concentrate on the 
ACR-1000. 

2.4 HTGRs 
It is not clear whether the HTGRs under development should be categorized as Genera-
tion III or IV plants. The Pebble Bed Modular Reactor (PBMR) is based on designs de-
veloped by Siemens and ABB for Germany, but abandoned after poor experience with a 
demonstration plant. It is now being developed by South African interests. The various 
takeovers and mergers in the reactor vending business mean that the technology license 
providers are now Areva (for Siemens) and Westinghouse (for ABB). The technology is 
being developed by the PBMR Co., which had as partners Eskom, the South African 
publicly owned electric utility, BNFL, and a US utility, Exelon, as well as other South 
African interests. The project was first publicized in 1998 when it was expected that 
first commercial orders could be placed in 2003. However, greater than anticipated 
problems in completing the design, the withdrawal of Exelon, and uncertainties about 
the commitment of other partners, including Westinghouse, has meant that the project 
time-scale has slipped dramatically and first commercial orders cannot now be made be-
fore 2012 even if there is no further slippage. 

Chinese interests are also developing similar technology with the same technological 
roots, and while optimistic statements have been made about development there, the 
Chinese government seems to be backing development of PWRs and perhaps BWRs. 
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3 Key determinants of nuclear economics 
 

There are several important determinants of the cost of electricity generated by a nu-
clear power plant. Some of these are intuitively clear whilst others are less obvious. The 
usual rule of thumb for nuclear power is that about two-thirds of the generation cost is 
accounted for by fixed costs—that is, costs that will be incurred whether or not the plant 
is operated—and the rest by running costs. The main fixed costs are the cost of paying 
interest on the loans and repaying the capital, but the decommissioning cost is also in-
cluded. The main running cost is the cost of operation, maintenance and repair, rather 
than fuel. However, as is shown below, there is a huge degree of variance in the as-
sumptions made for these parameters from forecast to forecast, so the broad split be-
tween fixed and variable costs should just be seen as indicative. 

It should be noted that these forecasts were carried out over a five year period and were 
denominated in various currencies. The impact of inflation—for example a 2.5 percent 
inflation rate would inflate costs by 13 percent over five years—and currency fluctua-
tions—for example, since 2000, the dollar-pound exchange rate has fluctuated between 
£1=$1.40 and £1=$1.93—means that any comparisons have a significant margin for er-
ror. 

3.1 Construction cost and time 
Construction cost is the most widely debated parameter, although other parameters, 
such as the cost of capital and the operating performance, are of comparable importance 
to the overall cost. There are a number of factors that explain why there is such contro-
versy about forecasts of construction cost. 

3.1.1 Unreliability of data 
Many of the quoted construction cost forecasts should be treated with skepticism. The 
most reliable indicator of future costs has often been past costs. However, most utilities 
are not required to publish properly audited construction costs, and have little incentive 
to present their performance in anything other than a good light. US utilities were re-
quired to publish reliable accounts of the construction costs of their nuclear plants for 
the economic regulator (who only allowed cost recovery from consumers for properly 
audited costs). The cost of the Sizewell B plant is also reasonably well documented be-
cause the company building it had few other activities in which the construction cost 
could be “disguised.” 

Even where the costs are reliably established, there can be disputes about why the costs 
were that level. For example, according to the PIU report,10 the cost of Sizewell B was 
35 percent higher in real terms than the price quoted in 1987 when it was ordered. How-
ever, of the final cost of about $5,400/kW, British Energy claims £750/kW (25 percent) 
was first-of-a-kind costs. Bid prices by vendors are also realistic, although equipment 
purchases may only represent less than half of the total cost (civil engineering and in-
stallation are generally a larger proportion). Contract prices may also be subject to esca-
lation clauses which means the final price is significantly higher and therefore bids have 
limited value. 
                                                      
10 Performance and Innovation Unit (2002) “The economics of nuclear power,” Cabinet Office, London. 
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Prices quoted by those with a vested interest in the technology, such as promotional 
bodies, plant vendors (when not tied to a specific order), and utilities committed to nu-
clear power, clearly must be viewed with skepticism. Prices quoted by international 
agencies, such as the Nuclear Energy Agency, also must be treated with care, particu-
larly when they are based on indicative rather than real costs. Generally, these costs are 
provided by national governments, who may have their own reasons to show nuclear 
power in a good light, and who generally do not base their figures on actual experience. 

Capital charges are normally expected to be the largest element of the unit cost of power 
from a nuclear power plant. The construction cost is therefore crucial in determining the 
cost of power from a nuclear power plant. Conventionally, quoted construction costs in-
clude the cost of the first charge of fuel but do not include the interest incurred on bor-
rowings during the construction of the plant, usually known as interest during construc-
tion (IDC). To allow comparisons between reactors with different output capacities, 
costs are often quoted as a cost per installed kW. Thus, a nuclear power plant with an 
output rating of 1200MW, quoted as costing £2,000/kW would have a total construction 
cost of £2,400 million. 

Forecasts of construction costs have been notoriously inaccurate, frequently being a se-
rious underestimate of actual costs and—counter to experience with most technologies 
where so-called “learning,” scale economies, and technical progress have resulted in re-
ductions in the real cost of successive generations of technology—real construction 
costs have not fallen and have tended to increase through time. 

There is also some inevitable variability from country to country regarding local labor 
costs and the cost of raw materials such as steel and concrete. 

3.1.2 Difficulties of forecasting 
There are a number of factors that make forecasting construction costs difficult. First, 
all nuclear power plants currently on offer require a large amount of on-site engineering, 
the cost of which might account for about 60 percent of total construction cost, with the 
major equipment items—such as the turbine generators, the steam generators, and the 
reactor vessel—accounting for a relatively small proportion of total costs.11 Large pro-
jects involving significant amounts of on-site engineering are notoriously difficult to 
manage and to control costs on; for example, in the United Kingdom, the costs of the 
Channel Tunnel and the Thames Barrier were well above forecasted costs. Some Gen-
eration IV designs, such as the Pebble Bed Modular Reactor, are designed to be largely 
factory-built and costs are expected to be much easier to control in a factory. 

For some designs of power plants, it is possible to buy the plant on “turnkey terms,” in 
other words at an agreed price that the vendor guarantees will not increase above the 
agreed level. Turnkey terms are only possible where the vendor is confident that they 
can control all aspects of the total construction cost. The current generation of gas-fire 
power plants, combined cycle gas turbine (CCGT) plants, are often sold under turnkey 
terms because they are largely factory-built in factories controlled by the vendor which 
require relatively little on-site work. In the mid-1960s, the four major US nuclear ven-

                                                      
11 As a result of the difficulty of controlling construction costs, the World Bank’s long-standing policy is 
not to lend money for nuclear projects. See: World Bank (1991) “Environmental Assessment Sourcebook: 
Guidelines for environmental assessment of energy and industry projects, volume III,” World Bank Tech-
nical Paper 154, World Bank, Washington, DC. 
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dors sold a total of twelve plants under turnkey terms, but lost massive amounts of 
money because of their inability to control costs and, since then, it is unlikely that any 
vendor has risked offering a complete plant on turnkey terms. Note that individual items 
of equipment may be purchased on turnkey terms but any price for a nuclear plant 
quoted as being on turnkey terms should be regarded with considerable skepticism. The 
Olkiluoto order is usually described as “turnkey,” with Areva being responsible for 
management of the construction, but the contract details are confidential and it is im-
possible to know whether there really are no cost-escalation clauses. For example, if an 
accident elsewhere led to a regulatory requirement to change the design, would Areva 
really bear the extra costs resulting? 

Second, costs increase if design changes are necessary; for example, if the original de-
tailed design turns out to be poor or the safety regulator requires changes in the design, 
or the design is not fully worked out before construction starts. In response to these 
problems, plant constructors now aim to get full regulatory approval before construction 
starts as with the proposed US combined Construction and Operation Licenses, and they 
require designs to be as fully worked out as reasonably as possible before construction 
starts. The risk of design change cannot be entirely removed, especially with new de-
signs where unanticipated problems might be thrown up by the construction process. 
Experience with operating reactors might also lead to a need to change the design after 
construction has started. For example, a major nuclear accident would necessarily lead 
to a review of all plants under construction (as well as all operating plants) and impor-
tant lessons could not be ignored simply because licensing approval of the existing de-
sign had already been given. 

3.1.3 Learning, scale economies, and technical progress 
The expectation with most technologies is that successive generations of design will be 
cheaper and better than their predecessors because of factors such as learning, econo-
mies of scale, and technical change. How far nuclear technology has improved through 
time is a moot point, but costs have clearly not fallen. The reasons behind this are com-
plex and not well understood, but factors that are often quoted are increased regulatory 
requirements (note: the standards have not increased, but the measures found to be nec-
essary to meet these standards have) and unwise cost-cutting measures with first genera-
tion reactors. 

The paucity of orders for current generations of reactors, especially those with properly 
documented costs, makes it difficult to know whether costs have stabilized yet, let alone 
begun to fall. However, “learning,” in other words, improvements in performance 
through repetition, and scale economies are two-way processes. In the 1970s, the major 
reactor vendors were receiving up to ten orders per year. This allowed them to set up ef-
ficient production lines to manufacture the key components and allowed them to build 
up skilled teams of designers and engineers. How far these economies of number pro-
duced reduced costs is difficult to estimate. A Nuclear Energy Agency report from 2000 
suggests that the intuitive expectation that economies of number would be large may not 
be accurate. It stated:12 

                                                      
12 Nuclear Energy Agency (2000) “Reduction of Capital Costs of Nuclear Power Plants,” OECD, Paris, p 
90. 
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“The ordering of two units at the same time and with a construction interval of at 
least twelve months will result in a benefit of approximately 15% for the second unit. 
If the second unit is part of a twin unit the benefit for the second unit is approxi-
mately 20%. The ordering of additional units in the same series will not lead to sig-
nificantly more cost savings. The standardisation effect for more than two units of 
identical design is expected to be negligibly low.” 

When the UK Performance and Innovation Unit (PIU) of the Cabinet Office examined 
nuclear power economics in 2002, it was provided with forecasts of costs from British 
Energy (the nuclear power plant owner) and BNFL (the plant vendor) that were based 
on “a substantial learning and scale effects from a standardised program.” The PIU was 
skeptical about the extent of learning, acknowledging that learning was likely to occur 
but that its impact could be limited. It stated:13 

“The pace and extent of learning may however be slower for nuclear than for renew-
ables because: 

• relatively long lead times for nuclear power mean that feedback from operat-
ing experience is slower; 

• relicensing of nuclear designs further delays the introduction of design 
changes; and 

• the scope for economies of large-scale manufacturing of components is less 
for nuclear because production runs are much shorter than for renewables, 
where hundreds and even thousands of units may be installed.” 

The major reactor vendors have received only a handful of orders in the past twenty 
years, their own production lines have closed, and skilled teams have been cut back. 
Westinghouse has received only one order in the past twenty-five years while even the 
French vendor Areva received its first order in about fifteen years with its order for 
Finland. For new orders, large components would generally have to be sub-contracted 
to specialist companies and built on a one-off basis, presumably at higher costs in coun-
tries such as Japan and, for the future, China.14 Design and engineering teams would 
have to be reassembled. 

The Sizewell B reactor was the most recent plant built in Britain, having been com-
pleted in 1995. Its cost is not easy to determine precisely because of disputes, for exam-
ple, about how far first-of-a-kind costs should be included. However, the overall cost 
was estimated by the National Audit Office in 1998 as about £3 billion,15 probably 
about £3.5 billion in today’s money or a cost of £3,400/kW.16 

3.1.4 Construction time 
An extension of the construction time beyond that forecast does not directly increase 
costs, although it will tend to increase IDC and often is a symptom of problems in the 
construction phase such as design issues, site management problems, or procurement 

                                                      
13 Performance and Innovation Unit (2002) “The Energy Review,” Cabinet Office, London, p 195. 
http://www.strategy.gov.uk/downloads/su/energy/TheEnergyReview.pdf. 
14 For example, if the Flamanville EPR is ordered, the pressure vessel would probably be manufactured in 
Japan. 
15 National Audit Office (1998) “The sale of British Energy,” House of Commons, 694, Parliamentary 
Session 1997–98, London, HMSO. 
16 British Energy claims that a significant proportion of this cost was non-recurring first-of-a-kind costs. 
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difficulties that will be reflected in higher construction costs. In a competitive electricity 
system, long forecast construction times would be a disadvantage because of the in-
creased risk that circumstances will change, making the investment uneconomic before 
it is completed and because of the higher cost of capital (see below) in a competitive 
environment. 

Overall lead time, from the time of the decision to build the plant to its commercial op-
eration (i.e., after the initial testing of the plant has been completed and its operation 
handed over by the vendor to the owner) is generally much longer than the construction 
time. For example, the decision to build the Sizewell B nuclear power plant in Britain 
was taken in 1979, but construction did not start until 1987 (because of delays not only 
from a public inquiry but also from difficulties in completing the design). The plant 
only entered commercial service in 1995, so the total lead-time was sixteen years. The 
cost of the pre-construction phase is generally relatively low compared to construction, 
unless the reactor is the “first-of-a-kind” where design and safety approval could prove 
expensive. However, for a generating company operating in a competitive environment, 
this long delay and the risks it entails—such as failure at the planning inquiry stage or 
cost escalation from regulatory requirements—is a major disincentive to choose nuclear. 

3.2 Output rating 
The maximum output rating of the plant will determine how many kilowatt-hours of 
saleable power the plant can produce. Particularly for the British plants, problems of 
corrosion and poor design have meant that most of the plants cannot sustain operation at 
their full-design rating. For the more widely used designs worldwide, plant “derating” 
has not been an important issue in recent years and most plants have been able to oper-
ate at their design level. Indeed, in some cases, changes to the plant after it has entered 
service—for example, use of a more efficient turbine or increase in the operating tem-
perature—have meant that some plants are able to operate at above-design rating. For 
future orders, there is still a small risk for unproven designs that the plant will not be 
able to operate at as high a rating as planned, but this risk is probably quite small com-
pared to other risks incurred. 

3.3 Cost of capital 
This is the other element, along with construction cost, in capital charges (see Appendix 
1). The real (net of inflation) cost of capital varies from country to country and from 
utility to utility, according to the country risk and the credit-rating of the company. 
There will also be a huge impact from the way in which the electricity sector is organ-
ized. If the sector is a regulated monopoly, the real cost of capital could be as low as 5 
to 8 percent but in a competitive electricity market, it is likely to be at least fifteen per 
cent. 

It is clear that if the largest element of cost in power from a nuclear power plant is the 
capital charge, more than doubling the required rate of return will severely damage the 
economics of nuclear power. There is no “right” answer about what cost of capital 
should be applied. When the electricity industry was a monopoly, utilities were guaran-
teed full cost recovery, in other words, whatever money they spent, they could recover 
from consumers. This made any investment a very low risk to those providing the capi-
tal because consumers were bearing all the risk. The cost of capital varied according to 
the country and whether the company was publicly or privately owned (publicly owned 
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companies generally have a high credit rating and therefore the cost of capital is lower 
for them than for a commercial company). The range was 5 to 8 per cent. 

In an efficient electricity market, the risk of investment would fall upon the generation 
company, not the consumers, and the cost of capital would reflect this risk. For exam-
ple, in 2002 in Britain, about 40 percent of the generating capacity was owned by finan-
cially distressed companies (about half of this was the nuclear capacity) and several 
companies and banks lost billions of pounds on investments in power stations that they 
had made or financed. In these circumstances, a real cost of capital of more than 15 per-
cent seems well-justified. If the risks were reduced—for example, if there were gov-
ernment guarantees on the market for power and the price—the cost of capital would be 
lower, but these would represent a government subsidy (state aid) and it is not clear they 
would be acceptable under European Union law. 

3.4 Operating performance 
For a capital intensive technology like nuclear power, high utilization is of great impor-
tance, so that the large fixed costs (repaying capital, paying interest, and paying for de-
commissioning) can be spread over as many saleable units of output as possible. In ad-
dition, nuclear power plants are physically inflexible and it would not be wise to start up 
and shut down the plant or vary the output level more than is necessary. As a result, nu-
clear power plants are operated on “base-load” except in the very few countries (e.g., 
France) where the nuclear capacity represents such a high proportion of overall generat-
ing capacity that this is not possible. A good measure of the reliability of the plant and 
how effective it is at producing saleable output is the load factor (capacity factor in US 
parlance). The load factor is calculated as the output in a given period of time expressed 
as a percentage of the output that would have been produced if the unit had operated un-
interrupted at its full-design output level throughout the period concerned.17 Generally, 
load factors are calculated on an annual or a lifetime basis. Unlike construction cost, 
load factor can be precisely and unequivocally measured and load factor tables are regu-
larly published by the trade press such as Nucleonics Week and Nuclear Engineering In-
ternational. There can be dispute about the causes of shutdowns or reduced output lev-
els, although from an economic point of view, this is often of limited relevance. 

As with construction costs, load factors of operating plants have been much poorer than 
forecast. The assumption by vendors and those promoting the technology has been that 
nuclear plants would be extremely reliable with interruptions to service being only for 
maintenance and refueling (some plant designs such as the AGR and Candu are refueled 
continuously and need to only shut down for maintenance) giving load factors of  85 to 
95 percent. However, performance was poor, and around 1980, the average load factor 
for all plants worldwide was about 60 percent. To illustrate the impact on the economics 
of nuclear power, if we assume fixed costs represent two-thirds of the overall cost of 
power if the load factor is 90 percent, the overall cost would go up by a third if load fac-
tor was only 60 percent. To the extent that poor load factors are caused by equipment 
failures, the additional cost of maintenance and repair resulting would further increase 
the unit cost of power. In a competitive market, a nuclear generator contracted to supply 
                                                      
17 Note that where reactors are derated, some organizations (e.g., the IAEA) quote the load factor on the 
authorized output level rather than the design level. While this may give some useful information on the 
reliability of the plant, for economic analysis purposes, the design rating should be used because that is 
what the purchaser paid to receive. 
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power that is unable to fulfill its commitment is likely to have to buy the “replacement” 
power for its customer, potentially at very high prices. 

However, from the late 1980s onward, the nuclear industry worldwide has made strenu-
ous efforts to improve performance and, worldwide, load factors now average more than 
80 percent and, for example, the United States now has an average of nearly 90 percent 
compared to less than 60 percent in 1980, although the average lifetime load factor of 
America’s nuclear power plants is still only 70 percent. 

Only 7 of the 414 operating reactors with at least a year’s service and which have full-
performance records have a lifetime load factor in excess of 90 percent and only the top 
100 plants have a lifetime load factor of more than 80 percent. Interestingly, the top 13 
plants are sited in only 3 countries: 6 in South Korea, 5 in Germany, and 2 in Finland. 

New reactor designs may emulate the level of reliability achieved by the top 2 percent 
of existing reactors, but, equally, they may suffer from “teething problems” like earlier 
generations. The French experience in the late 1990s with the N4 design is particularly 
salutary. Note that in an economic analysis, the performance in the first years of opera-
tion, when teething problems are likely to emerge, will have much more weight than 
that of later years because of the discounting process. Performance may decline in the 
later years of operation as equipment wears out and has to be replaced, and improve-
ments to the design are needed to bring the plant nearer current standards of safety. This 
decline in performance will probably not weigh very heavily in an economic analysis 
because of discounting. Overall, an assumption that reliability of 90 percent or more 
seems hard to justify on the basis of historic experience. 

3.5 Non-fuel operations and maintenance cost 
Many people assume that nuclear power plants are essentially automatic machines re-
quiring only the purchase of fuel and have very low-running costs. As a result, the non-
fuel operations and maintenance (O&M) costs are seldom prominent in studies of nu-
clear economics. As discussed below, the cost of fuel is relatively low and has been rea-
sonably predictable. However, the assumption of low-running costs was proved wrong 
in the late 1980s and early 1990s when a small number of US nuclear power plants were 
retired because the cost of operating them (excluding repaying the fixed costs) was 
found to be greater than the cost of building and operating a replacement gas-fired plant. 
It emerged that non-fuel O&M costs were on average in excess of $22/MWh 
(1.5p/kWh) while fuel costs were then more than $12/MWh (0.8p/kWh).18 Strenuous ef-
forts were made to reduce non-fuel nuclear O&M costs and by the mid-1990s, average 
non-fuel O&M costs had fallen to about $12.5/MWh (0.7p/kWh) and fuel costs to 
$4.5/MWh (0.25p/kWh). However, it is important to note that these cost reductions 
were achieved mainly by improving the reliability of the plants rather than actually re-
ducing costs. Many O&M costs are largely fixed—the cost of employing the staff and 
maintaining the plant—and vary little according to the level of output of the plant, so 
the more power that is produced, the lower the O&M cost per MWh. The threat of early 
closure on grounds of economics has now generally been lifted in the United States. 

It is also worth noting that British Energy, which was essentially given its eight nuclear 
power plants when it was created in 1996, collapsed financially in 2002 because income 

                                                      
18 For statistics on O&M costs, see: http://www.nei.org/index.asp?catnum=2&catid=95. 
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from operation of the plants barely covered operating costs. This was in part due to high 
fuel costs, especially the cost of reprocessing spent fuel, an operation only carried out 
now in Britain and France (see below). Average O&M costs for British Energy’s eight 
plants, including fuel, varied between about 1.65 and 1.9p/kWh from 1997 to 2004. 
However, in the first nine months of fiscal year 2004/05, operating costs including fuel 
were 2.15p/kWh because of poor performance at some plants. The average over the pe-
riod is about 1.85p/kWh. If we assume the cost of fuel, including reprocessing, is about 
0.7p/kWh, this leaves about 1.15p/kWh as the non-fuel O&M cost, about 60 percent 
higher than the US average. 

3.6 Fuel cost 
Fuel costs have fallen as the world uranium price has been low since the mid-1970s. US 
fuel costs average about 0.25p/kWh but these are arguably artificially low because the 
US government assumes responsibility for disposal of spent fuel in return for a flat fee 
of $1/MWh (0.06p/kWh). This is an arbitrary price set more than two decades ago and 
is not based on actual experience—no fuel-disposal facilities exist in the United States 
or anywhere else—and all the US spent-fuel remains in temporary store pending the 
construction of a spent-fuel repository, expected to be at Yucca Mountain. Real disposal 
costs are likely to be much higher. 

Fuel costs are a small part of the projected cost of nuclear power because uranium sup-
plies are relatively abundant in comparison with current usage. The issue of spent-fuel 
disposal is difficult to evaluate. Reprocessing is expensive and, unless the plutonium 
produced can be profitably used, it does nothing to help waste disposal. Reprocessing 
merely splits the spent fuel into different parts and does not reduce the amount of radio-
activity to be dealt with. Indeed, reprocessing creates a large amount of low- and inter-
mediate-level waste because all the equipment and material used in reprocessing be-
comes radioactive waste. The previous contract between BNFL and British Energy, be-
fore its collapse, was reported to be worth £300 million per year, which equates to about 
0.5p/kWh. The new contract is expected to save British Energy about £150 to 200 mil-
lion per year, although this will be possible only because of the underwriting of losses at 
BNFL by the government. Despite this poor cost experience, the United States was re-
ported to be considering allowing the reprocessing of spent fuel, which has not occurred 
since a ban was imposed by the Carter administration. The cost of disposing of high-
level waste is hard to estimate because no facilities have been built or are even under 
construction and any cost projections must have a very wide margin for error.  

3.7 Accounting lifetime 
One of the features of Generation III plants compared to their predecessors is that they 
are designed to have a life of about sixty years compared to their predecessors which 
generally had a design life of about half that. For a technology dominated by fixed 
costs, it might be expected that doubling the life would significantly reduce fixed costs 
per unit because there would be much longer to recover these costs. In practice, this 
does not apply. Commercial loans must be repaid over no more than fifteen to twenty 
years and in a discounted cash flow calculation, costs and benefits more than ten to fif-
teen years forward have little weight (see Appendix 1). 
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There is a trend to life-extend existing plants and PWRs are now often expected to be 
run for more than forty years, compared to their design life of, say, thirty years. How-
ever, it should not be assumed that there will be cheap electricity once capital costs have 
been repaid. Life extension may require significant new expenditure to replace worn out 
equipment and to bring the plant closer to current safety standards. Life extension is not 
always possible and, for example, Britain’s AGRs which had a design life of twenty-
five years are now expected to run for thirty-five years, but life extension beyond that is 
not expected to be possible because of problems with the graphite moderator blocks. 

3.8 Decommissioning cost and provisions 
These are difficult to estimate because there is little experience with decommissioning 
commercial-scale plants and the cost of disposal of waste (especially intermediate or 
long-lived waste) is uncertain (see Appendix 4). However, even schemes which provide 
a very high level of assurance that funds will be available when needed will not make a 
major difference to the overall economics. For example, if the owner was required to 
place the (discounted) sum forecast to be needed to carry out decommissioning at the 
start of the life of the plant, this would add only about 10 percent to the construction 
cost. The British Energy segregated fund, which did not cover the first phase of de-
commissioning, required contributions of less than £20 million per year equating to a 
cost of only about 0.03p/kWh. 

The problems come if the cost has been initially underestimated, the funds are lost, or 
the company collapses before the plant completes its expected lifetime. All of these 
problems have been suffered in Britain. The expected decommissioning cost has gone 
up several-fold in real terms over the past couple of decades. In 1990, when the CEGB 
was privatized, the accounting provisions made from contributions by consumers were 
not passed on to the successor company, Nuclear Electric. The subsidy that applied 
from 1990 to 1996, described by Michael Heseltine19 as being to “decommission old, 
unsafe nuclear plants” was in fact spent as cash flow by the company owning the plant 
and the unspent portion has now been absorbed by the Treasury. The collapse of British 
Energy has meant that a significant proportion of their decommissioning costs will be 
paid by future taxpayers. 

Table 5.  Liability limits for the OECD countries as of September 2001 
Country Liability limits under 

national legislationa 
Financial security 

requirementsa,b 
Belgium 298 mln €  
Finland 250 mln €  
France 92 mln €  

Germany unlimited 2,500 mln €c 
Great Britain 227 mln €  
Netherlands 340 mln €  

Spain 150 mln €  
Switzerland unlimited 674 mln € 

Slovakia 47 mln €  
Czech Republic 177 mln €  

Hungary 143 mln €  

                                                      
19 M. Heseltine, President of the Board of Trade, Hansard, October 19, 1992. 
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Canada 54mln €  
United States 10,937 mln € 226 mln € 

Mexico 12 mln €  
Japan unlimited 538 mln € 
Korea 4,293 mln €  

Source: Unofficial Statistics – OECD/NEA, Legal Affairs 

Notes: a using official exchange rates from 06/2001 to 06/2002, b if different than the liability limit, c 256 
mln € insurance, 2.5 bln € operator’s pool, 179 mln € from Brussels amendment to Paris Convention. 

3.9 Insurance and liability 
This is a controversial area because at present, the liability of plant owners is limited by 
international treaty to only a small fraction of the likely costs of a major nuclear acci-
dent. The Vienna Treaty, passed in 1963 and amended in 1997, limits a nuclear opera-
tor’s liability to $300 million Special Drawing Rights. At present the British govern-
ment underwrites residual risk beyond £140 million, though the limit is expected to rise 
under the Paris and Brussels Conventions to €700 million (£500m). The limit on liabil-
ity was seen as essential to allow the development of nuclear power but can also be seen 
as a large subsidy. The German Bundestag’s Study Commission on Sustainable En-
ergy20 compiled figures on the liability limits in OECD countries (see table 5) and this 
shows the wide range of liability limits from very low sums, (for example, Mexico), to 
much higher sums, (for example, Germany). 

The scale of the costs caused by, for example, the Chernobyl disaster, which may be of 
the order hundreds of billions of pounds (it is invidious to put a cost on the value of loss 
of life or incapacity but for insurance purposes it is necessary), means that conventional 
insurance cover would probably not be available and even if it was, its cover might not 
be credible because a major accident would bankrupt the insurance companies. 

There have been proposals that “catastrophe bonds” might provide a way for plant own-
ers to provide credible cover against the financial cost of accidents. A catastrophe bond 
is a high-yield, insurance-backed bond containing a provision causing interest and/or 
principal payments to be delayed or lost in the event of loss due to a specified catastro-
phe, such as an earthquake. Whether these would provide a viable way to provide some 
insurance cover against nuclear accidents and what the impact on nuclear economics 
would be will be hard to determine until concrete proposals are made. 

                                                      
20 Deutscher Bundestag (2002). Nachhaltige Energieversorgung unter den Bedingungen der Globalisie-
rung und Liberalisierung. Bericht der Enquete-Kommission. Zur Sache 6/2002. Deutscher Bundestag: 
Berlin. Chapter 3.3.2, Table 3.3, Page 232. http://dip.bundestag.de/btd/14/094/1409400.pdf  

Kommentar [RF1]: empty foot-
note 
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4 Recent studies on nuclear costs and why they differ 
 

In the past three to four years, there have been a number of studies of the economics of 
nuclear power. These include: 

1. May 2000: “The role of nuclear power in enhancing Japan’s energy security,” 
James A Baker III, Institute for Public Policy of Rice University 

2. 2002: Lappeenranta University of Technology (LUT). Finnish 5th Reactor Eco-
nomic Analysis 

3. February 2002: “The economics of nuclear power,” UK Performance and Inno-
vation Unit 

4. September 2002: “Business case for early orders of new nuclear reactors,” 
Scully Capital 

5. February 2003: “The future of nuclear power: an interdisciplinary MIT study” 
6. March 2004: “The costs of generating electricity,” The Royal Academy of Engi-

neers 
7. August 2004: “The economic future of nuclear power,” University of Chicago, 

funded by the US Department of Energy 
8. August 2004: “Levelised unit electricity cost comparison of alternative tech-

nologies for base load generation in Ontario,” Canadian Energy Research Insti-
tute; prepared for the Canadian Nuclear Association 

9. March 2005: “Projected costs of generating electricity: 2005 update,” IEA/NEA 
10. April 2005: “Business case for early orders of new nuclear reactors,” OXERA 

Table 6 tabulates the key assumptions made in each of these studies. 

4.1 Rice University 
The Rice University study examines strategic issues for Japan in ensuring its energy se-
curity. It uses a forecast of the overall cost of generation, from plants coming on line in 
2010, produced by the Japanese Central Research Institute of Electric Power Industry 
(CRIEPI).21 This produces a cost per kWh of 5p/kWh. However, this figure should be 
seen in the context of the very high price of electricity in Japan, partly attributable to the 
high value of the yen, and without examining CRIEPI’s assumptions in detail, it is diffi-
cult to draw strong conclusions. 

4.2 Lappeenranta University of Technology 
The Lappeenranta study was widely publicized when the decision to go ahead with the 
Olkiluoto plant was taken. Many of the assumptions are not fully specified, being classi-
fied as commercially sensitive, but the very low cost of capital, the low operating costs, 
and the high load factor inevitably lead to a low generation cost. The Olkiluoto order is 
discussed in Section 5.1.1. 

4.3 Performance and Innovation Unit 
The Performance and Innovation Unit (PIU) of the UK Cabinet Office reviewed the 
economics of nuclear power in 2002 as part of the government’s review of energy pol-

                                                      
21 Japanese costs are converted to sterling using an exchange rate of £1=200 Yen. 
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icy leading to the White Paper of 2003. It estimates the cost of generation from Sizewell 
B, if first-of-a-kind costs are excluded, which is estimated to reduce the construction 
cost of Sizewell B to £2,250/kW (total cost of £2.7 billion) as about 6p/kWh if a 12 per-
cent discount rate is applied. 

It also reports the forecasts provided by British Energy and BNFL and presents them us-
ing common assumptions on the discount rate. It is difficult to represent all the informa-
tion in the PIU report. The table shows the costs for the 8th unit, built as twin units and 
using AP-1000 technology. The assumption is that by the 8th unit, all set-up and first-of-
a-kind charges will have been met and the “settled-down” cost will apply. It uses 
BNFL’s assumptions, but with PIU’s assumptions of discount rates of 8 percent (to rep-
resent a plant built where there was very low risk, for example, if there was full cost 
pass-through to consumers), and 15 percent, (to represent a plant subject to much 
greater commercial risk). The 8 percent case is calculated with a fifteen-year plant life 
(to represent the likely length of a commercial loan) and a thirty-year plant life, while 
the 15 percent case is only shown with a fifteen-year life. Given that a cost or benefit 
arising in twenty years counts as only 6 percent of its undiscounted value and one aris-
ing in thirty years counts as only 1.5 percent of its undiscounted value in a DCF calcula-
tion, the difference between a fifteen- and thirty-year life is likely to be small. The cost 
estimates if only one unit is built are 40–50 percent higher reflecting the assumption 
that first-of-a-kind costs will be about £300 million. 

Many of the assumptions, such as for construction cost, are categorized as commercially 
sensitive and are not published. However, the PIU does state that BNFL’s and British 
Energy’s construction cost estimates are less than £840/kW. On load factor, the figures 
are also confidential although the PIU states the assumed performance is significantly 
higher than 80 percent. 

4.4 Scully Capital 
The Scully report was commissioned by the US of Department of Energy and examines 
the costs of generation from a 1100MW PWR (AP-1000) under four assumptions of 
construction cost, $1 billion, $1.2bn, $1.4bn, and $1.6bn, equivalent to £500/kW, 
£600/kW, £700/kW and £800/kW. Unlike other reports, the Scully approach is to fore-
cast the wholesale electricity price and see what rates of return a nuclear plant would 
yield under their performance assumptions. At a market electricity price of $35/mWh 
(1.95p/kWh), a nuclear plant would achieve an internal rate of return including inflation 
of 7.3–10.7 percent, depending on the construction cost. It compares this to the industry 
norm of 10–12 percent. Only the $1 billion construction cost case is within this range. 
Sensitivity analyses are carried out on the market price for electricity, the load factor, 
the price of fuel and the construction time. There are also sensitivities regarding the fi-
nancial aspects, including the proportion of debt to equity and the cost of borrowing. 

4.5 MIT 
The Massachusetts Institute of Technology (MIT) study was a very detailed and prestig-
ious study of nuclear generation costs compared to other generation options such as 
CCGT plants. It has detailed assumptions about the important elements. On O&M costs, 
it assumes that these can be 25 percent less than the average for existing plants because 
of competitive pressures on generators. On construction costs, the report acknowledges 
that its assumed costs are far lower than those incurred in the most recent plants in the 
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United States (albeit these were completed about twenty years ago). On capacity factor, 
the report considers two cases with 85 percent as the upper case and 75 percent as the 
lower case. It bases these assumptions on the good recent performance of US plants for 
the upper case, but the lower case is based on the many years it took to achieve this 
level. The detailed assumptions on decommissioning do not appear to be specified but it 
can be assumed they follow current practice of requiring a segregated fund. The cost of 
decommissioning is not specified. 

The main sensitivities reported are on load factor and on project lifetime, although re-
flecting the relatively high cost of capital, the lifetime extension makes only a small dif-
ference to the overall cost (about 5 percent), while the load factor assumption change 
makes a much greater difference (about 10 to 15 percent). In all cases, the gas- and coal-
fired options are substantially cheaper than nuclear, up to 45 percent for gas and about 
35 percent for coal. Even reducing nuclear construction costs by 25 percent, construc-
tion time by twelve months and the cost of capital to 10 percent does not close the gap 
between nuclear and coal or gas. 

4.6 The Royal Academy of Engineers 
The Royal Academy of Engineers’ report compared a range of generating technologies 
and found that the cost of power from a nuclear plant was very close to the cost of 
power from a gas-fired plant, about 10 to 30 percent cheaper than coal (depending on 
the coal technology used) and about a third of the cost of renewables. It assumed there 
were three likely reactor choices: the EPR, AP-1000, and the ACR. It drew heavily on 
the MIT study for its estimates of the cost determinants, although it did not follow them 
in all cases, citing “engineering judgement” where it differed. For example, on O&M 
costs, it forecast costs nearly 50 percent lower than MIT.22 The report states that an al-
lowance for decommissioning cost is included in the capital cost, but it does not specify 
the cost assumptions. Its assumptions seem consistently optimistic for all parameters 
and the overall low cost of generation is therefore not surprising. 

4.7 University of Chicago 
The University of Chicago study reviews a range of estimates of nuclear costs, but does 
not produce its own cost estimates. In its “no-policy” scenario, it calculates the levelised 
cost of electricity (LCOE) for three different cases of plants of 1000MW—the most ex-
pensive representing the EPR ordered for Olkiluoto, the middle case representing a 
plant on which first-of-a-kind (FOAK) costs would be incurred (e.g., the AP-1000), and 
the lowest, one on which the FOAK costs had already been met (e.g., the ABWR or 
ACR-700). The results shown in the table do not adequately summarize the results of 
the study, which presents a wide range of sensitivities, but they do illustrate that even 
with extremely low construction costs, a relatively high discount rate does have a severe 
impact on overall costs. 

                                                      
22 The MIT forecasts themselves represented a significant reduction on current cost levels (25 percent) 
brought about by competitive forces. However, the discount rate chosen by the RAE is consistent with 
there being full cost recovery. 
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4.8 Canadian Energy Research Institute 
The Canadian Energy Research Institute study compares the forecast costs of generation 
from coal- and gas-fired generation with the cost of generation from a pair of Candu-6 
units (1346MW total), the current generation of Candu, and a pair of ACR-700 units 
(1406MW total), the Generation III Candu design.23 We focus on the ACR-700 option, 
which is forecast to be cheaper than the Candu-6. Decommissioning costs are assumed 
to be about £250/kW and payments are made into a fund through the life of the plant, 
amounting to £3.6 million per year over thirty years or 0.03p/kWh. The overall cost is 
relatively low and most of the assumptions are similar to those used in other studies. 

4.9 International Energy Agency/Nuclear Energy Agency 
The IEA/NEA study is based on questionnaire responses from national authorities on 
the cost of generation options. It is difficult to evaluate this report because of the huge 
range of national assumptions, with Eastern European countries often providing very 
low costs and Japan very high. The key factor is the very low discount rate used, which 
with relatively optimistic performance assumptions gives low generation costs. 

4.10 OXERA 
OXERA’s report of April 2005 was followed up by a second report in June giving more 
details on the assumptions behind their cost estimates.24 The OXERA report includes 
very detailed financial analysis of the economics but it relies mainly on other reports for 
its assumptions on technical performance. For example, an extremely high assumption 
on load factor of 95 percent is included with no justification. The OXERA report fol-
lows the same approach as the Scully report of calculating the rate of return that would 
be achieved at a given electricity price. With a base-load electricity price of £27–
33/MWh, about 50 percent more than British Energy is currently receiving, the internal 
rate of return would be 8–11 percent for a single reactor (depending on the proportions 
of debt and equity). For a program of eight units, the return would be more than 15 per-
cent for the last units. It should be noted that while the construction costs are higher 
than some forecasts, they are much lower than for Sizewell and lower than the reported 
cost of Olkiluoto. Its assumptions on load factor and operating cost—drawn partly from 
the IEA/NEA report and the Scully Capital report—require a huge improvement in the 
current generation of plants. 

On the basis of these cost projections and on the cost of the government’s current pro-
gram on renewables—which OXERA estimates to be £12bn—OXERA estimates that a 
nuclear program would achieve a similar impact in terms of carbon dioxide emissions 
reductions at a cost of only £4.4 billion plus the cost of public insurance risk. The £4.4 
billion is made up of £1.1billion in capital grants and £3.3 billion in loan guarantees. 
OXERA does not estimate the cost of public insurance risk. How might a new British 
program of nuclear power plants be carried through? 

                                                      
23 Canadian dollar amounts are converted using an exchange rate of £1=C$2.20 
24 OXERA (2005) “Financing the nuclear option: modelling the cost of new build.” 
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5 Need for and extent of public subsidies 
 

Successive studies by the British government in 1989, 1995, and 2002 came to the con-
clusion that in a liberalized electricity market, electric utilities would not build nuclear 
power plants without government subsidies and government guarantees capping costs. 
In most countries where the monopoly status of the generating companies has been re-
moved, similar considerations would apply. The recent order in Finland clearly does not 
follow this expectation, but, as argued above, the special status of the buyer as a not-for-
profit company owned by the industrial companies contracted to buy the output of the 
plant means that the special conditions in Finland mean this is not an example other 
countries are likely to follow. 

The areas where subsidies and guarantees might be required would be particularly those 
which are not fully under the control of the owner. These include: 

• Construction cost. The construction cost of a new nuclear power plant would be 
high and there would be a significant risk of cost overruns. The government 
might therefore have to place a cap on the cost a private investor would have to 
pay. 

• Operating performance. There would be a significant risk that performance 
would be poorer than forecast. Reliability is largely under the control of the 
owner and it is not clear whether developers would be sufficiently confident in 
their abilities to take the risk of poorer than expected reliability. 

• Non-fuel operations and maintenance cost. Similarly, this is largely under the 
control of the owner and they may be willing to bear this risk. 

• Nuclear fuel cost. Purchasing fuel has not generally been seen as a risky activity. 
Uranium can easily be stockpiled and the risk of increasing fuel purchase cost 
can be dealt with. The cost of spent-fuel disposal (assuming reprocessing is not 
chosen) is, however, much more contentious and nuclear owners might press for 
some form of cap on disposal cost similar to the US arrangements. 

• Decommissioning cost. The cost of decommissioning is very hard to forecast, 
but the costs will rise well into the future. Contributions to a well-designed seg-
regated decommissioning fund appear relatively manageable, although if experi-
ence with decommissioning and waste disposal does reveal that current esti-
mates are significantly too low, or if returns on investment of the fund are lower 
than expected, contributions might have to be increased significantly. Private 
developers might therefore seek some “cap” on their contributions. 

Guarantees would be particularly extensive and high for the first units built, which 
would bear the set-up costs for a new technology. If a series of plants are built and ex-
perience with them is good, it is possible that the market would be willing to bear more 
of the risk, although a political commitment to promote nuclear power is by no means 
sufficient to ensure the completion of a program. It should be remembered that the 
Reagan and Thatcher administrations, which promised a strong revival in the nuclear 
industry, presided over steep declines in the fortunes of nuclear power. 
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6 Conclusions 
 

Worldwide, the ordering rate for new nuclear power plants has been at a low ebb for at 
least twenty years. The reasons behind this are complex and include public opposition 
to new nuclear power plants and over-capacity of power plants in many potential mar-
kets. However, the poor economic performance of many existing plants has also been an 
important factor. This has been exacerbated by the moves in the past decade to competi-
tive electricity markets, which favor low capital cost-generation options that are quick 
to build and for which the performance can be guaranteed—characteristics that current 
nuclear designs do not possess. The few plants under construction are often of old de-
signs that would not be acceptable for new orders in the West and are being built in 
countries where electricity reforms are still at a very early stage. 

Around Europe and North America, there is renewed interest in new nuclear power 
plants. Nuclear generation capacity in Britain will inevitably fall sharply in the next 
decade, reducing its contribution from about 25 percent of power needs to less than 10 
percent. This has led to concern that the plants will—if there is no government interven-
tion—be replaced by gas-fired plants, significantly increasing Britain’s emissions of 
greenhouse gases. However, a number of the major countries have actual or de facto nu-
clear phase-out policies, including Sweden, Italy, Belgium, Germany, the Netherlands, 
Spain, and Switzerland. There is likely to be some slippage in the closure timetables in 
these countries, but it is a long step from a policy of phasing-out to one that allows new 
orders. So, none of the countries in Europe seems likely to face such a steep decline in 
nuclear capacity in the next decade. 

In the United States, the Bush administration is attempting to deal with one of the eco-
nomic risks—uncertainties about the length and cost of licensing—by offering federal 
subsidies. It remains to be seen whether this will be sufficient to overcome the financial 
community’s distrust of nuclear power. The utilities cannot build nuclear plants without 
the implicit support of credit rating agencies and investment analysts. 

This renewed interest in nuclear power is despite the poor economic record of nuclear 
power in many countries and has been fueled by a number of national and international 
studies in recent years that have much lower projected generation costs from new nu-
clear plants than has been the case so far. However, these studies are controversial and 
many of their underpinning assumptions are implausible. 

There are three reasons why forecasting the cost of power from a nuclear plant is diffi-
cult and controversial: 

• Several of the variables relate to processes which have not been proven on a 
commercial scale, such as decommissioning, waste disposal, especially for long-
lived low-, intermediate-, and high-level waste. All experience of nuclear power 
suggests that unproven processes could easily cost significantly more than ex-
pected. There is therefore a strong risk that forecasts of these costs could be sig-
nificantly too low. 

• For some of the variables, there is no clear “correct” answer. For example, the 
discount rate could vary widely whilst there is no clear consensus on how provi-
sions to pay for decommissioning should be arranged. 



 

 31 

• Perhaps most important, there is a lack of reliable, up-to-date data on actual nu-
clear plants. Utilities are notoriously secretive about the costs they are incurring, 
while in the past two decades, there has been only a handful of orders in West-
ern Europe and none since about 1980 in North America. All the modern de-
signs are therefore more or less untested. 

Over the past four decades, there has consistently been a wide gap between the per-
formance of existing nuclear plants and the performance forecast for new nuclear plants. 
These expectations have almost invariably proved overoptimistic. The gap in expected 
performance is as wide as ever between current forecasts of the economic performance 
of the next generation of nuclear power plants and that of the existing plants. While the 
fact that in the past, such expectations have proved wrong, it is not a guarantee that cur-
rent forecasts would prove inaccurate; it does suggest that forecasts relying on major 
improvements in performance should be treated with some skepticism. 

The most important assumptions are on construction cost, operating performance, run-
ning costs, and the cost of capital/discount rate. 

The conventional wisdom in the nuclear industry over the past decade or more has been 
that nuclear construction costs must be about $1,000/kW for nuclear to be competitive 
with combined cycle gas-fired generation (which has construction costs of about 
$500/kW). Even the most optimistic studies do not forecast construction costs as low as 
$1,000/kW. Nevertheless, the clustering of costs around the $2,000/kW mark does sug-
gest that designs are being produced to a target cost. The rise in gas prices in the past 
couple of years, if sustained, will increase the level of construction cost nuclear would 
still be competitive at, although it seems unlikely that it would be enough to pay for a 
doubling of expected nuclear construction cost. 

Clearly, designs should not be made in the absence of an economic framework. How-
ever, the main issues in evaluating these projections are how realistic these forecasts 
are. Particularly, there must be concern about the extent to which the huge cost reduc-
tions forecast, compared to the cost of the current generation of plants, have been 
achieved by rationalization of the designs, and how far it is through cost-cutting meas-
ures that in the long run will prove unwise. It should be remembered that in the 1960s 
when the economics of nuclear power were found to be poorer than forecast, cost reduc-
tions were made by savings on materials and by rapid scaling-up, measures which in 
retrospect now appear imprudent because of the impact they had on the performance of 
plants. For example, steam generators in PWRs had to be replaced at great expense and 
requiring a shutdown of about a year, sometimes after only fifteen years, because the 
material used was not durable enough. 

Amongst the forecasts examined in this report, the typical construction cost projected is 
about $2,000/kW. The one forecast that appears to be based on an actual contract cost, 
the Lappeenranta study, uses a significantly higher construction cost forecast. It should 
be noted that the Olkiluoto bid, which is the basis for the Lappeenranta study, is often 
seen as being below the economic price. 

Another area where large improvements in performance are expected is in the non-fuel 
O&M costs, where forecasts are often only about 40 percent of current UK costs and 
about 70 percent of current US costs. Operating performance forecasts typically suggest 
load factors of 90 percent, far above the level achieved so far and in line with the per-
formance achieved by only the most reliable plants worldwide. 
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However, the most difficult and important assumption is arguably over the cost of capi-
tal. In some cases, such as the RAE and the IEA/NEA forecasts, the assumptions chosen 
would only be credible if the owners of the plant were allowed full cost recovery. The 
US forecasts use more sophisticate methods of determining the cost of capital, but given 
the lack of progress in most of the United States with introducing competition into elec-
tricity, it is not clear that these studies fully reflect the impact of opening electricity 
generation to competition. Unless there was a return to a monopoly electricity industry 
structure—a measure that in current circumstances seems almost inconceivable—this 
would mean the owners would effectively be subsidized by taxpayers (if there was gov-
ernment underwriting) or electricity consumers (if a consumer subsidy was reintro-
duced). It is questionable whether such arrangements would be politically viable or 
whether they would be acceptable under European Union law which proscribes (except 
in specific cases) state aids. 

If the owner of the plant is going to be required to bear significant economic risk, a real 
discount of at least 15 percent, as used by the PIU, is likely to be imposed, and even 
with very optimistic assumptions of construction and O&M costs (e.g., the PIU or Chi-
cago University forecasts) this would result in generation costs probably in excess of 
about 4p/kWh. 

If nuclear power plants are to be built, it seems clear that extensive government guaran-
tees and subsidies would be required. These might be required for: 

• construction cost 
• operating performance 
• non-fuel operations and maintenance cost 
• nuclear fuel cost 
• decommissioning cost 

There might also need to be commercial guarantees that the output of the plants would 
be purchased at a guaranteed price. It seems doubtful that such an extensive package of 
“state aids” would be acceptable under EU competition law. 



 

Table 6.  Comparison of assumptions in recent forecasts of generation costs from nuclear power plants 
Forecast Construction 

cost ($/kW) 
Construction 
time (months) 

Cost of capital 
(% real) 

Load factor 
(%) 

Non-fuel 
O&M p/kWh 

Fuel cost 
(p/kWh) 

Operating 
life (years) 

Decommissioning 
scheme 

Generating 
cost (p/kWh) 

Sizewell B 4050 
5400 

86 - 84 2.07 1.26 40 Part segregated, 
part cash flow 

6 
? 

Rice University         5.0 
Lappeenranta Univ ~2340  5 91 0.9 0.36 60  1.6 
Performance & In-

novation Unit 
<1500 - 8 

8 
15 

>80   30 
15 
15 

 2.31 
2.83 
3.79 

Scully Capital 900 
1080 
1260 
1440 

60  90 1.0 0.5 40 £260m accrued 
over forty-year life 

of plant 

 

Massachusetts Insti-
tute Technology 

2000 60 11.5 85 
75 

1.5 - 40 
25 

 3.7 
4.4 

Royal Academy of 
Engineers 

2070 60 7.5 90 0.80 0.72 40 Included in con-
struction cost 

2.3 

Chicago University 1000 
1500 
1800 

84 12.5 85 1.0 0.54 40 £195m 2.9 
3.4 
3.9 

Canadian Nuclear As 1920 72 10 90 0.88 0.45 30 Fund. 0.03p/kWh 3.3 
IEA/NEA 2000–4500 60–120 5 

10 
85 0.68–1.6 0.27–1.17 40 Included in con-

struction cost 
1.2–2.7 
1.8–3.8 

OXERA 2925 first plant 
2070 later unit 

  95 0.63 0.54 40 £500m in fund af-
ter forty years life 

 

Notes: 
1. Sizewell B operating costs are the average for all eight of British Energy’s plants including seven AGRs as well as the Sizewell B PWR. 
2. The MIT O&M cost includes fuel.



 

Appendix 1:  Discounting, cost of capital, and required rate of re-
turn 
 

A particularly difficult issue with nuclear economics is dealing with and putting on a 
common basis for comparison, the streams of income, and expenditure at different times 
in the life of a nuclear power plant. Under UK plans, the time from placing of the reac-
tor order to completion of decommissioning could span more than 200 years. 

Conventionally, streams of income and expenditure incurred at different times are com-
pared using discounted cash flow (DCF) methods. These are based on the intuitively 
reasonable proposition that income or expenditure incurred now should be weighted 
more heavily than income or expenditure earned in the future. For example, a liability 
that has to be discharged now will cost the full amount but one that must be discharged 
in, say, ten years can be met by investing a smaller sum and allowing the interest earned 
to make up the additional sum required. In a DCF analysis, all incomes and expendi-
tures through time are brought to a common basis by “discounting.” If an income of 
$100 is received in one year’s time and the “discount rate” is 5 percent, the “net present 
value” of that income is $95.23—a sum of $95.23 would earn $4.77 in one year to make 
a total of $100. The discount rate is usually seen as the “opportunity cost” of the money, 
in other words, the rate of return (net of inflation) that would be earned if the sum of 
money was invested in an alternative use. 

Whilst this seems a reasonable process over periods of a decade or so and with rela-
tively low discount rates, over long periods with high discount rates, the results of dis-
counting can be very powerful and the assumptions that are being made must be thought 
through. For example, if the discount rate is 15 percent, a cost incurred in ten years of 
$100 would have a net present value of only $12.28. A cost incurred in 100 years, even 
if the discount rate was only 3 percent, would have a net present value of only $5.20, 
while at a discount rate of 15 percent, costs or benefits more than fifteen years forward 
have a negligible value in an normal economic analysis (see table 7). 

Table 7.  Impact of discounting: net present values 
Discounting period (years) 3% 15% 

5 0.86 0.50 
10 0.74 0.25 
15 0.64 0.12 
20 0.55 0.061 
30 0.41 0.015 
50 0.23 0.00092 

100 0.052 - 
150 0.012 - 

Source: author’s calculations 

If we apply this to nuclear plants operating in a competitive market where the cost of 
capital will be very high, this means that costs and benefits arising more than, say, ten 
years in the future will have little weight in an evaluation of the economics of a nuclear 
power plant. Thus, increasing the life of a plant from thirty years to sixty years will 
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have little benefit, while refurbishment costs incurred after, say, fifteen years will like-
wise have little impact. 

For decommissioning—for which, under UK plans, the most expensive stage is not ex-
pected to be started until 135 years after plant closure—this means very large decom-
missioning costs will impact only slightly even with a very low discount rate consistent 
with investing funds in a very secure place with a low rate of return, such as 3 percent. 
If we assume a Magnox plant will cost about $1.8 billion to decommission and the final 
stage accounts for 65 percent of the total (undiscounted) cost ($1,170 million), a sum of 
only $28 million invested when the plant is closed will have grown sufficiently to pay 
for the final stage of decommissioning. 

The implicit assumption with DCF methods is that the rate of return specified will be 
available for the entire period. Give that even government bonds—usually seen as the 
most secure form of investment—are only available for 30 years forward, and that a pe-
riod of 100 years of sustained economic growth is unprecedented in human history, this 
assumption seems difficult to justify. 

So, with nuclear power, there is the apparent paradox that at the investment stage, a very 
high discount rate (or required rate of return) of 15 percent or more is likely to be ap-
plied to determine whether the investment will be profitable, while for decommission-
ing funds, a very low discount rate is applied to determine how much decommissioning 
funds can be expected to grow. 

The key element resolving this paradox is risk. Nuclear power plant investment has al-
ways been risky because of the difficulty of controlling construction costs, the variabil-
ity of performance, the risk of the impact of external events on operation and the fact 
that many processes are yet to be fully proven (such as disposal of high-level waste and 
decommissioning). In a competitive environment, there are additional risks because of 
the rigidity of the cost structure. Most of the costs will be incurred whether or not the 
plant is operated. Thus while nuclear plants will do well when the wholesale price is 
high (as was the case with British Energy from 1996 to 1999), they will do poorly when 
the wholesale price is low (as was from 2000 to 2002). The fact that a plant has made 
good profits for a decade will not protect it from bankruptcy in the bad years, and finan-
ciers will therefore see investment in nuclear power as extremely risky and will apply a 
very high interest rate, reflecting the risk that the money loaned could easily be lost. 
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Appendix 2: Nuclear reactor technologies 
 

Nuclear power reactors can be broadly categorized by the coolant and moderator they 
use. The coolant is the fluid (gas or liquid) that is used to take the heat from the reactor 
core to the turbine generator. The moderator is a medium which reduces the velocity of 
the neutrons so that they are retained in the core long enough for the nuclear chain reac-
tion to be sustained. There are many possible combinations of coolant and moderator, 
but amongst the reactors currently in service or on offer, there are four possible coolants 
and three moderators. 

The most common types of nuclear plant are the pressurized water reactor (PWR) and 
boiling water reactor (BWR). These are derived from submarine propulsion units and 
use ordinary water (“light water”) as coolant and moderator. The advantage of water is 
its cheapness, although it is not the most efficient moderator (some of the neutrons are 
absorbed by water molecules rather than “bouncing” off the water). As a result, the pro-
portion of the active isotope of uranium has to be increased from about 0.7 percent 
found in natural uranium to more than 3 percent. This process is expensive. 

As a coolant, the disadvantage of water is that it is designed to work as a liquid. If there 
is a break in the coolant circuit, the water will boil and will cease to be as effective as 
expected. Avoiding the possibility of so-called “loss of coolant accidents” is therefore a 
major priority in reactor design. The main difference between a PWR and a BWR is that 
in a BWR, the coolant water is allowed to boil and passes directly to the turbine genera-
tor circuit where the steam generated in the reactor core drives the turbine. In a PWR, 
the coolant water is maintained as a liquid by keeping it under pressure. A heat ex-
changer (steam generator) is used to transfer the energy to a secondary circuit where 
water is allowed to boil and drives the turbine. BWRs are therefore less complex than 
PWRs but because the coolant water goes direct to the turbine, radioactive contamina-
tion of the plant is more extensive. Most of the Russian-design plants, WWERs, are es-
sentially PWRs. Britain has one operating PWR, Sizewell B, but no BWRs. 

Some plants use “heavy water” as coolant and moderator, the most common of which 
are the Candu reactors designed in Canada. In heavy water, the deuterium isotope of 
hydrogen replaces the much more common form of the atom. Heavy water is a more ef-
ficient moderator and Candu plants can use natural (unenriched) uranium. However, its 
greater efficiency is counterbalanced by the cost of producing heavy water. 

All of the British plants except Sizewell B are cooled by carbon dioxide gas and moder-
ated by graphite. The first generation plants, the Magnoxes, use natural uranium but 
most were unable to operate long-term at their full-design rating because the carbon di-
oxide coolant becomes mildly acidic in contact with water and causes corrosion of the 
piping. The second generation plants use enriched uranium and improved materials 
were used to prevent corrosion. Graphite is an efficient moderator, but is quite expen-
sive compared to water. Its disadvantages are its flammability and its tendency to crack 
and distort with exposure to radiation. 

The design used at Chernobyl, the RBMK, uses graphite as the moderator and light wa-
ter as the coolant. 
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There has been consistent interest in reactors that use helium gas as the coolant and 
graphite as moderator: so-called high temperature gas-cooled reactors (HTGRs). Helium 
is entirely inert and is an efficient, albeit expensive coolant. The use of helium and 
graphite means the reactor operates at a much higher temperature than a light water or 
carbon dioxide cooled reactor. This allows more of the heat energy to be turned into 
electricity and also opens the way to use some of the heat in industrial processes while 
still being able to generate power. However, despite research in several countries, in-
cluding Britain, going back more than fifty years, no commercial design of a plant has 
ever been produced and the demonstration plants built have a very poor record. 

Recently, use of HTGRs as a means of producing hydrogen as a fuel which could, in 
turn, replace petroleum through use in fuel cells has led to renewed interest in HTGRs. 
One of the most advanced programs is that of South Africa’s, which has adapted an old 
German design to make the Pebble Bed Modular Reactor (PBMR), so called because 
the fuel is in the form of tennis ball sized “pebbles.” However, the South African pro-
gram has suffered severe delays and it is unlikely that the design will be available to or-
der on a commercial basis before about 2015. 
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Appendix 3 : Nuclear reactor vendors 

PWRs 
There were four main independent vendors of PWR technology: Westinghouse, Com-
bustion Engineering (CE), Babcock & Wilcox (B&W) and the Russian vendor (produc-
ing the WWER). 

Westinghouse technology is the most widely used and has been widely adopted using 
technology licenses, the main licensees being Framatome (France), Siemens (Germany), 
and Mitsubishi (Japan). Westinghouse plants have been sold throughout the world al-
though it has had one order in the past twenty-five years (Sizewell B) and its last order 
in the United States (not subsequently cancelled) was more than thirty years ago. In 
1998, BNFL took over the nuclear division of Westinghouse, although in July 2005, 
BNFL confirmed it had appointed N M Rothschild to handle the sale of the Westing-
house division. A large number of companies have been spoken of as potential bidders. 
Westinghouse’s main current design is the AP-1000, although it has yet to sell any 
units. 

Both Framatome and Siemens became independent of Westinghouse and, in 2000, they 
merged their nuclear businesses with 66 percent of the shares going to Framatome and 
the remainder going to Siemens. Framatome is now controlled by the Areva group, 
which is owned by the French government. Its main current design is the EPR (Euro-
pean Pressurized water Reactor) of which it has sold one unit (to Finland) and expects 
to sell another to EDF (France). Framatome supplied all the PWR plants in France 
(about sixty) and has exported plants to South Africa, Korea, China, and Belgium. Sie-
mens supplied ten out of the eleven PWRs built in Germany and exported PWRs to the 
Netherlands, Switzerland, and Brazil. 

Mitsubishi supplies PWR technology to Japan where it has built twenty-two units, but it 
has never tried to sell plants on the international market. Its most modern design is the 
APWR, but ordering has continually been delayed and the first units will probably be 
ordered in the next year or two. 

Combustion Engineering produced its own design of PWR, which is installed in the 
United States. Outside the United States, its technology was licensed by Korea. The nu-
clear division of Combustion Engineering was taken over by ABB in 1996 and in turn 
taken over by BNFL in 1999. It is now part of the Westinghouse division and would be 
sold with the Westinghouse division if the sale of Westinghouse proceeds. The newest 
Combustion Engineering design is the System 80+, but Westinghouse is not actively 
trying to sell plants of this design. However, the Korean vendor, Doosan, has adopted 
and developed the design for its future plants as the APR-1400. It has made tentative ef-
forts to sell plants to China, but it seems likely that most future orders will be for its Ko-
rean home market. 

Babcock & Wilcox (B&W) supplied PWRs of its own design to the US market but the 
Three Mile Island accident, which involved B&W technology, effectively ended their 
interest in reactor sales. The only plant of B&W design built outside the United States 
was built under license in Germany, but this was closed in 1988 due to licensing prob-
lems soon after its completion in 1986 and will not be restarted. 
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BWRs 
The main designer of BWRs is the US company General Electric (GE), which has sup-
plied a large number of plants to the United States and international markets such as 
Germany, Japan, Switzerland, Spain, and Mexico. Its licensees include Siemens, Hi-
tachi, and Toshiba. Siemens (now part of Areva) offered the SWR design for the 
Olkiluoto tender but otherwise does not seem actively to be trying to sell BWRs. 

The Japanese licensees continue to offer BWRs in Japan. There are now thirty-two 
BWRs in operation or under construction in Japan. A few first-of-a-kind plants in Japan 
were bought from GE but the rest were split between Hitachi and Toshiba. Their current 
design is the ABWR—the first Generation III design to come on line. The first unit was 
completed in 1996 and there are two more units in service and one under construction. 
There are also two ABWRs under construction in Taiwan, supplied by GE. However, 
like Mitsubishi, Toshiba and Hitachi have not tried to sell plants on the international 
market. Apart from the ABWR, GE has developed the SBWR but no sales seem likely 
in the next few years. 

Asea Atom (Sweden) produced its own design of BWR, nine of which were built in 
Sweden and two in Finland. Asea Atom merged with Brown Boveri to form ABB, 
which in turn was taken over by BNFL in 1999. BNFL no longer actively promotes this 
design. 

Candus 
The main heavy water reactor supplier is the Canadian company Atomic Energy of 
Canada Limited (AECL), which has supplied more than twenty units in Canada as well 
as exports to Argentina, Romania, Korea, and China. It also sold plants to India but be-
cause of proliferation issues, it has had no contact with the Indians since 1975, although 
India continues to build plants of this forty-year-old design. Argentina has built three 
heavy water plants: one Candu and two plants of German design (one of which is in-
complete and no work is currently being carried out on it). The main future design for 
AECL will be the Advanced Candu reactor (ACR), which is expected to be produced in 
two sizes: 750MW (ACR-700) and 1100–1200MW (ACR-1000). 

British Energy did contribute funds to the development of the ACR-700 but this ended 
when British Energy collapsed in 2002 and sold its interests in the operation of eight 
Canadian nuclear power plants. 
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Appendix 4: Decommissioning 
 

Decommissioning of nuclear plants has attracted considerable public interest in recent 
years as reactors get near the end of their life, forecast decommissioning costs escalate, 
and weaknesses in the schemes that were meant to provide the funds to do the job be-
come apparent. 

Conventionally, decommissioning is split into three separate phases. In the first, the fuel 
is removed and the reactor is secured. The time it takes to remove the fuel varies, with 
plants that refuel off line taking much less time (e.g., PWRs and BWRs). These are de-
signed for about a third of the fuel to be replaced in an annual shutdown of a few weeks. 
Reactors that refuel on line (e.g., AGRs and Candus) take much longer because the re-
fueling machine is designed to constantly replace small proportions of the fuel while the 
reactor is in operation. This requires precision machinery that moves slowly and remov-
ing the entire core may take several years. Once the fuel has been removed, the reactor 
is no longer at risk of a criticality and the vast majority of the radioactivity and all the 
high-level waste has been removed. Until this phase has been completed, the plant must 
essentially be staffed as fully as if it was operating. There is thus a strong economic in-
centive to complete phase I as quickly as possible consistent with safety standards. In 
technological terms, phase I is simple—it mostly represents a continuation of the opera-
tions that were being carried out while the plant was operating. Note that dealing with 
the spent fuel is not included in the cost of phase I. 

In the second phase, the uncontaminated or lightly contaminated structures are demol-
ished and removed, essentially leaving the reactor. Again, this is relatively routine work 
requiring no special expertise. In economic terms, the incentive is to delay it as long as 
possible to minimize the amount that needs to be collected from consumers to pay for 
it—the longer the delay, the more interest the decommissioning fund will accumulate. 
The limiting point is when the integrity of the buildings can no longer be assured and 
there is a risk they might collapse, leading to a release of radioactive material. In Brit-
ain, it is planned to delay phase II until forty years after plant closure. 

The third phase, the removal of the reactor core is by far the most expensive and most 
technologically challenging, requiring remote robotic handling of materials. As with 
phase II, the economic incentive is to delay the work until it is no longer safe to do so 
and in Britain, this is expected to result in a delay of 135 years. 

At the end of phase III, the ideal is that the land can be released for unrestricted use, in 
other words, the level of radioactivity is no higher than in uncontaminated ground. In 
practice, this is not always going to be possible, and at some “dirty” sites such as the 
Dounreay site in Scotland where a demonstration fast reactor operated, use of the land is 
expected to be restricted indefinitely because of the high level of contamination. 

Very few commercial-size plants that have operated beyond a full life have been fully 
decommissioned, so the cost is not well established. The operations required are said to 
have been demonstrated successfully on a small scale but until they are applied to a 
large scale plant, the process cannot be seen as proven—many processes that worked on 
a small scale in this area have suffered problems when scaled up to commercial size. 
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Much of the cost of decommissioning is accounted for by disposal of the radioactive 
waste generated. The cost of waste disposal in modern facilities is also not well estab-
lished, especially for intermediate-level waste and long-lived low-level waste because 
of the lack of experience in building facilities to take this waste. 

This uncertainty is reflected in the way that estimates of nuclear decommissioning costs 
are quoted. Typically, they are quoted as a percentage of the construction cost (perhaps 
25 percent). Given that the cost of decommissioning clearly only bears a limited rela-
tionship to the cost of construction, this illustrates how little is known of the costs. 

A typical breakdown of the expected undiscounted cost of decommissioning might be 
one sixth for phase I, one third for phase II, and a half for phase III. British Energy was 
required to operate a “segregated” fund to pay for decommissioning of its plants, al-
though phase I was expected to be paid for out of cash flow. BNFL, which owned the 
Magnox plants until they were transferred to the Nuclear Decommissioning Authority in 
April 2005, is publicly owned and treasury policy is not to allow segregated funds to be 
used for publicly owned companies. British Energy assumed a discount rate of 3 percent 
for the first eighty years and zero after then, while BNFL assumed a discount rate of 2.5 
percent indefinitely. In 2003/04, British Energy increased its discount rate to 3.5 per-
cent. 

If we assume a total cost of decommissioning of $1.8 billion, split between phases as 
above with phase I carried out immediately after closure, phase II after 40 years and 
phase III after 135 years, the undiscounted and discounted costs will be as in table 8. 

Table 8.  Illustrative costs of decommissioning (£m) 
 Undiscounted British Energy (3%) British Energy (3.5%) BNFL (2.5%) 

Phase I 300 300 300 300 
Phase II 600 184 151 223 
Phase III 1200 113 76 41 

Total 1800 597 527 574 

Source: author’s calculations 

British Gas-cooled reactors are expected to be very expensive to decommission because 
of their physical bulk, which produces a large amount of waste. PWRs and BWRs are 
much more compact and are expected to cost perhaps only a third as much, (e.g., Size-
well B might be expected to cost a total of about $540 million). 

Various means are used so that, as required by the “polluter pays principle,” those that 
consume the electricity produced pay for the decommissioning. Under all methods, if 
the cost of decommissioning is underestimated, there will be a shortfall in funds that 
will inevitably have to be paid for by future taxpayers. In Britain, the forecast cost of 
decommissioning the Magnox plants has grown by a factor of about four in the past 
twenty years, even before any of the most challenging work has been carried out. 

The least reliable method of collecting the funds is the unfunded accounting method, 
under which the company makes accounting provisions for the decommissioning. The 
provisions are collected from consumers but the company is free to invest them in any 
way it sees fit, and these provisions exist as a proportion of the assets of the company. 
This method will only be reliable if it can be assumed the company will continue to ex-
ist until decommissioning is completed and that the assets it builds make at least the rate 
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of return assumed. The weakness of this method was illustrated when the Central Elec-
tricity Generating Board (CEGB)—the company that owned the power stations in Eng-
land and Wales until privatization in 1990—was privatized. About £1.7 billion in ac-
counting provisions had been made by consumers, but the company was sold for only 
about a third of its asset value, so effectively two-thirds of the provisions were lost. The 
government did not pass on any of the sale proceeds to the company that inherited the 
nuclear power plants, thereby losing the remainder of the provisions. 

A more reliable method appears to be the segregated fund. Under this method, consum-
ers make provisions through the life of the plant which are placed in a fund that the 
plant owner has no access to and which is independently managed. The funds are in-
vested only in very secure investments to minimize the risk of loss of the funds. Such 
investments might yield no more than 3 percent interest. When decommissioning is re-
quired, the company owning the plant can draw down the segregated fund. Again, there 
are risks as illustrated by British experience. The British Energy segregated fund did not 
cover stage I, by far the most expensive stage in discounted terms (about half), while the 
company collapsed long before the plants had completed their operating life and the 
company had to be rescued by government, and much of the burden of decommission-
ing will be borne by future taxpayers, who will be required to provide the funds when 
decommissioning is carried out. 

Perhaps the lowest risk against provisions becoming inadequate would be if a segre-
gated fund was set up at the time the plant entered service with sufficient funds to pay 
for decommissioning after the design life of the plant had been completed. If we assume 
a life of thirty years and a discount rate of 3 percent, the required sum would be about 
40 percent of the undiscounted sum. Thus, if the undiscounted decommissioning cost is 
about 25 percent of the construction cost, the sum that would have to be placed in the 
fund would be about 10 percent of the construction cost. Even this scheme would be in-
adequate if the plant had to be retired early, or if the decommissioning cost had been 
underestimated, or if the funds did not achieve the rate of return expected. 

Overall then, the sums required to decommission nuclear plants are likely to be high. 
But even under the schemes that provide the lowest risk that there will be insufficient 
funds to pay for decommissioning, if the costs are estimated accurately, the impact on 
overall costs would appear to be limited because of the impact of discounting. 
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Heinrich Böll Foundation 
 

The Heinrich Böll Foundation, affiliated with the Green Party and headquartered in the 
Hackesche Höfe in the heart of Berlin, is a legally independent political foundation 
working in the spirit of intellectual openness. 

The Foundation's primary objective is to support political education both within Ger-
many and abroad, thus promoting democratic involvement, sociopolitical activism, and 
crosscultural understanding. 

The Foundation also provides support for art and culture, science and research, and de-
velopmental cooperation. Its activities are guided by the fundamental political values of 
ecology, democracy, solidarity, and non-violence. 

By way of its international collaboration with a large number of project partners – cur-
rently numbering about 100 projects in almoust 60 countries – the Foundation aims to 
strengthen ecological and civil activism on a global level, to intensify the exchange of 
ideas and experiences, and to keep our sensibilities alert for change. 

The Heinrich Böll Foundation's collaboration on sociopolitical education programs with 
its project partners abroad is on a long-term basis. Additional important instruments of 
international cooperation include visitor programs, which enhance the exchange of ex-
periences and of political networking, as well as basic and advanced training programs 
for committed activists. 

The Heinrich Böll Foundation has about 180 full-time employees as well as approxi-
mately 320 supporting members who provide both financial and non-material assis-
tance. 

Ralf Fücks and Barbara Unmüßig comprise the current Executive Board. Dr. Birgit 
Laubach is the CEO of the Foundation. 

Two additional bodies of the Foundation's educational work are: the "Green Academy" 
and the "Feminist Institute". 

The Foundation currently maintains foreign and project offices in the USA and the Arab 
Middle East, in Afghanistan, Bosnia-Herzegovina, Brazil, Cambodia, Croatia, the 
Czech Republic, El Salvador, Georgia, India, Israel, Kenya, Lebanon, Mexico, Nigeria, 
Pakistan, Poland, Russia, South Africa, Serbia, Thailand, Turkey, and an EU office in 
Brussels.  

For 2005, the Foundation had almost 36 million € public funds at its disposal. 
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NUCLEAR POWER: MYTH AND REALITY – The publication, by the Heinrich Böll 
Foundation, of six issue papers on nuclear power is a contribution to the debates on the 
future of nuclear energy. The publication coincides with the 20th anniversary of the 
Chernobyl disaster. The issue papers give an up-to-date overview of recent develop-
ments and debates concerning the use of nuclear power world-wide. Their aim is to pro-
vide informed analyses for decision makers, journalists, activists, and the public in gen-
eral. 
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